Show simple item record

Epistemological framing and novice elementary teachers’ approaches to learning and teaching engineering design

dc.contributor.authorWendell, Kristen B.
dc.contributor.authorSwenson, Jessica E. S.
dc.contributor.authorDalvi, Tejaswini S.
dc.date.accessioned2019-09-30T15:32:09Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-09-30T15:32:09Z
dc.date.issued2019-09
dc.identifier.citationWendell, Kristen B.; Swenson, Jessica E. S.; Dalvi, Tejaswini S. (2019). "Epistemological framing and novice elementary teachers’ approaches to learning and teaching engineering design." Journal of Research in Science Teaching 56(7): 956-982.
dc.identifier.issn0022-4308
dc.identifier.issn1098-2736
dc.identifier.urihttps://hdl.handle.net/2027.42/151339
dc.description.abstractAs engineering learning experiences increasingly begin in elementary school, elementary teacher preparation programs are an important site for the study of teacher development in engineering education. In this article, we argue that the stances that novice teachers adopt toward engineering learning and knowledge are consequential for the opportunities they create for students. We present a comparative case study examining the epistemological framing dynamics of two novice urban teachers, Ana and Ben, as they learned and taught engineering design during a four‐week institute for new elementary teachers. Although the two teachers had very similar teacher preparation backgrounds, they interpreted the purposes of engineering design learning and teaching in meaningfully different ways. During her own engineering sessions, Ana took up the goal not only of meeting the needs of the client but also of making scientific sense of artifacts that might meet those needs. When facilitating students’ engineering, she prioritized their building knowledge collaboratively about how things work. By contrast, when Ben worked on his own engineering, he took up the goal of delivering a product. When teaching engineering to students, he offered them constrained prototyping tasks to serve as hands‐on contexts for reviewing scientific explanations. These findings call for teacher educators to support teachers’ framing of engineering design as a knowledge building enterprise through explicit conversations about epistemology, apprenticeship in sense‐making strategies, and tasks intentionally designed to encourage reasoning about design artifacts.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherteacher education
dc.subject.otherepistemology
dc.subject.otherengineering design
dc.subject.otherelementary school
dc.subject.otherteacher framing
dc.titleEpistemological framing and novice elementary teachers’ approaches to learning and teaching engineering design
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEducation
dc.subject.hlbsecondlevelManagement
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbsecondlevelWomen’s and Gender Studies
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelBusiness and Economics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHumanities
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151339/1/tea21541_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151339/2/tea21541.pdf
dc.identifier.doi10.1002/tea.21541
dc.identifier.sourceJournal of Research in Science Teaching
dc.identifier.citedreferenceRuss, R. S., & Luna, M. J. ( 2013 ). Inferring teacher epistemological framing from local patterns in teacher noticing. Journal of Research in Science Teaching, 50 ( 3 ), 284 – 314.
dc.identifier.citedreferenceMoore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., & Stohlmann, M. S. ( 2014 ). A framework for quality K‐12 engineering education: Research and development. Journal of Pre‐College Engineering Education Research (J‐PEER), 4 ( 1 ), 2.
dc.identifier.citedreferenceMoore, T. J., Tank, K. M., Glancy, A. W., & Kersten, J. A. ( 2015 ). NGSS and the landscape of engineering in K‐12 state science standards. Journal of Research in Science Teaching, 52 ( 3 ), 296 – 318.
dc.identifier.citedreferenceNational Research Council. ( 2012 ). A framework for K‐12 science education. Washington, DC: National Academies Press.
dc.identifier.citedreferenceNGSS Lead States. ( 2013 ). Next generation science standards. Washington, DC: National Academies Press.
dc.identifier.citedreferencePerry, W. G., Jr. ( 1970 ). Forms of intellectual and ethical development in the college years. New York: Holt, Rinehart & Winston.
dc.identifier.citedreferenceRedish, E. F. ( 2004 ). A theoretical framework for physics education research: Modeling student thinking. In E. F. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 1 – 63 ). Bologna: Italian Physical Society.
dc.identifier.citedreferenceRinke, C. R., Gladstone‐Brown, W., Kinlaw, C. R., & Cappiello, J. ( 2016 ). Characterizing STEM teacher education: Affordances and constraints of explicit STEM preparation for elementary teachers. School Science and Mathematics, 116 ( 6 ), 300 – 309.
dc.identifier.citedreferenceRose, M. A., Carter, V., Brown, J., & Shumway, S. ( 2017 ). Status of elementary teacher development: Preparing elementary teachers to deliver technology and engineering experiences. Journal of Technology Education, 28 ( 2 ), 2 – 18.
dc.identifier.citedreferenceRoth, W. M. ( 1996 ). Art and artifact of children’s designing: A situated cognition perspective. The Journal of the Learning Sciences, 5 ( 2 ), 129 – 166.
dc.identifier.citedreferenceRuss, R. S. ( 2014 ). Epistemology of science vs. epistemology for science. Science Education, 98 ( 3 ), 388 – 396.
dc.identifier.citedreferenceRyan, M., Gale, J., & Usselman, M. ( 2017 ). Integrating engineering into core science instruction: Translating NGSS principles into practice through iterative curriculum design. International Journal of Engineering Education, 33 ( 1 ), 321 – 331.
dc.identifier.citedreferenceSandoval, W. A. ( 2005 ). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89 ( 4 ), 634 – 656.
dc.identifier.citedreferenceScherr, R., & Hammer, D. ( 2009 ). Student behavior and epistemological framing: Examples from collaborative active‐learning activities in physics. Cognition and Instruction, 27 ( 2 ), 147 – 174.
dc.identifier.citedreferenceSchwarz, C. V., Passmore, C., & Reiser, B. J. ( 2017 ). Helping students make sense of the world using next generation science and engineering practices. Arlington, VA: NSTA Press.
dc.identifier.citedreferenceShah, J. J., Smith, S. M., & Vargas‐Hernandez, N. ( 2003 ). Metrics for measuring ideation effectiveness. Design Studies, 24 ( 2 ), 111 – 134.
dc.identifier.citedreferenceSmithsonian Science Education Center. ( 2018 ). Curriculum unit: How can we provide energy to people’s homes? https://ssec.si.edu/energy
dc.identifier.citedreferenceStake, R. ( 1995 ). The art of case study research. London: Sage.
dc.identifier.citedreferenceSwenson, J., & Wendell, K. B. ( 2017 ). Characterizing indicators of students’ productive disciplinary engagement in solving fluid mechanics problems. Proceedings of the 124th American Society for Engineering Education Annual Conference and Exposition, Columbus, OH.
dc.identifier.citedreferenceSwenson, J. E. S. ( 2018 ). Developing knowledge in engineering science courses: Sense‐making and epistemologies in undergraduate mechanical engineering homework sessions. (Doctoral dissertation). Tufts University.
dc.identifier.citedreferenceTannen, D. ( 1993 ). What’s in a frame? Surface evidence for underlying expectations. In D. Tannen (Ed.), Framing in discourse (pp. 14 – 56 ). New York: Oxford University Press.
dc.identifier.citedreferencevan Langenhove, L., & Harré, R. ( 1999 ). Introducing positioning theory. In R. Harré & L. van Langenhove (Eds.), Positioning Theory: Moral Contexts of International Action, 14 – 31. Oxford: Wiley‐Blackwell.
dc.identifier.citedreferenceWatkins, J. E., Spencer, K., & Hammer, D. ( 2014 ). Examining young students’ problem scoping in engineering design. Journal of Pre‐College Engineering Education Research, 4 ( 1 ), 43 – 53.
dc.identifier.citedreferenceWendell, K. B. ( 2014 ). Design practices of pre‐service elementary teachers in an integrated engineering and literature experience. Journal of Pre‐College Engineering Education Research, 4 ( 2 ) Article 4.
dc.identifier.citedreferenceWickman, P. O. ( 2004 ). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88 ( 3 ), 325 – 344.
dc.identifier.citedreferenceWindschitl, M., Thompson, J., & Braaten, M. ( 2011 ). Ambitious pedagogy by novice teachers: Who benefits from tool‐supported collaborative inquiry into practice and why. Teachers College Record, 113 ( 7 ), 1311 – 1360.
dc.identifier.citedreferenceWright, C., Wendell, K. B., & Paugh, P. P. ( 2018 ). “Just put it together to make no commotion:” Re‐imagining urban elementary students’ participation in engineering design practices. International Journal of Education in Mathematics, Science and Technology, 6 ( 3 ), 285 – 301.
dc.identifier.citedreferenceYin, R. K. ( 2009 ). Case study research: Design and methods. London: Sage.
dc.identifier.citedreferenceAtman, C. J., Adams, R. S., Mosborg, S., Cardella, M. E., Turns, J., & Saleem, J. ( 2007 ). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96 ( 4 ), 359 – 379.
dc.identifier.citedreferenceBarton, A. C. ( 2003 ). Teaching science for social justice. New York: Teachers College Press.
dc.identifier.citedreferenceBerland, L. K., & Hammer, D. ( 2012 ). Framing for scientific argumentation. Journal of Research in Science Teaching, 48 ( 1 ), 68 – 94.
dc.identifier.citedreferenceBerland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. ( 2016 ). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53 ( 7 ), 1082 – 1112.
dc.identifier.citedreferenceBrown, J. S., Collins, A., & Duguid, P. ( 1989 ). Situated cognition and the culture of learning. Educational Researcher, 18 ( 1 ), 32 – 42.
dc.identifier.citedreferenceBucciarelli, L. ( 1994 ). Designing engineers. Cambridge, MA: MIT Press.
dc.identifier.citedreferenceCapobianco, B. M., DeLisi, J., & Radloff, J. ( 2018 ). Characterizing elementary teachers’ enactment of high‐leverage practices through engineering design‐based science instruction. Science Education, 102 ( 2 ), 342 – 376.
dc.identifier.citedreferenceCapobianco, B. M., & Rupp, M. ( 2014 ). STEM teachers’ planned and enacted attempts at implementing engineering design‐based instruction. School Science and Mathematics, 114 ( 6 ), 258 – 270.
dc.identifier.citedreferenceCardella, M. E., Atman, C. J., Turns, J., & Adams, R. S. ( 2008 ). Students with differing design processes as freshmen: Case studies on change. International Journal of Engineering Education, 24 ( 2 ), 246 – 259.
dc.identifier.citedreferenceCarlone, H. B., Haun‐Frank, J., & Webb, A. ( 2011 ). Assessing equity beyond knowledge‐and skills‐based outcomes: A comparative ethnography of two fourth‐grade reform‐based science classrooms. Journal of Research in Science Teaching, 48 ( 5 ), 459 – 485.
dc.identifier.citedreferenceChin, C., & Chia, L. G. ( 2004 ). Problem‐based learning: Using students’ questions to drive knowledge construction. Science Education, 88 ( 5 ), 707 – 727.
dc.identifier.citedreferenceCoffey, J. E., Hammer, D., Levin, D. M., & Grant, T. ( 2011 ). The missing disciplinary substance of formative assessment. Journal of Research in Science Teaching, 48 ( 10 ), 1109 – 1136.
dc.identifier.citedreferenceCrismond, D. P., & Adams, R. S. ( 2012 ). The informed design teaching and learning matrix. Journal of Engineering Education, 101 ( 4 ), 738 – 797.
dc.identifier.citedreferenceCross, N. ( 2003 ). The expertise of exceptional designers. Paper presented at the Expertise in Design: Design Thinking Research Symposium 6, Sydney, Australia.
dc.identifier.citedreferenceCunningham, C. M. ( 2009 ). Engineering is elementary. The Bridge, 30 ( 3 ), 11 – 17.
dc.identifier.citedreferenceCunningham, C. M., & Kelly, G. J. ( 2017a ). Epistemic practices of engineering for education. Science Education, 101 ( 3 ), 486 – 505.
dc.identifier.citedreferenceCunningham, C. M., & Kelly, G. J. ( 2017b ). Framing engineering practices in elementary school classrooms. International Journal of Engineering Education, 33 ( 1 ), 295 – 307.
dc.identifier.citedreferenceDalvi, T., & Wendell, K. B. ( 2017 ). Using student video cases to assess pre‐service elementary teachers’ engineering teaching responsiveness. Research in Science Education, 47 ( 5 ), 1101 – 1125.
dc.identifier.citedreferenceDalvi, T., Wendell, K. B., & Johnson, J. ( 2016 ). Community‐based engineering: Experiences from a 2nd grade urban classroom. Young Children, 71 ( 5 ), 8 – 15.
dc.identifier.citedreferenceDanielak, B. A., Gupta, A., & Elby, A. ( 2014 ). Marginalized identities of sense‐makers: Reframing engineering student retention. Journal of Engineering Education, 103 ( 1 ), 8 – 44.
dc.identifier.citedreferenceDelta Education. ( 2018 ). FOSS Next Generation K‐8 Science Curriculum Modules.
dc.identifier.citedreferenceDiFrancesca, D., Lee, C., & McIntyre, E. ( 2014 ). Where is the "E" in STEM for young children? Engineering design education in an elementary teacher preparation program. Issues in Teacher Education, 23 ( 1 ), 49 – 64.
dc.identifier.citedreferenceEichinger, D., Doherty, E., Lehman, J., & Merwade, V. ( 2013 ). Design of a door alarm. Retrieved from https://stemedhub.org/resources/1772
dc.identifier.citedreferenceElby, A., & Hammer, D. ( 2001 ). On the substance of a sophisticated epistemology. Science Education, 85 ( 5 ), 554 – 567.
dc.identifier.citedreferenceForbes, C. T. ( 2011 ). Preservice elementary teachers’ adaptation of science curriculum materials for inquiry‐based elementary science. Science Education, 95 ( 5 ), 927 – 955.
dc.identifier.citedreferenceGlaser, B., & Strauss, A. ( 1967 ). The discovery of grounded theory. London, UK: Weidenfeld and Nicholson.
dc.identifier.citedreferenceGoffman, E. ( 1974 ). Frame analysis: An essay on the organization of experience. Cambridge, MA: Harvard University Press.
dc.identifier.citedreferenceHammer, D., & Elby, A. ( 2003 ). Tapping epistemological resources for learning physics. The Journal of the Learning Sciences, 12 ( 1 ), 53 – 90.
dc.identifier.citedreferenceHammer, D., Elby, A., Scherr, R. E., & Redish, E. F. ( 2005 ). Resources, framing, and transfer. Transfer of learning from a modern multidisciplinary perspective (pp. 89 – 120 ). Greenwich, CT: Information Age Publishing.
dc.identifier.citedreferenceHarel, I. E., & Papert, S. E. ( 1991 ). Constructionism: Research reports and essays, 1985–1990. Norwood, NJ: Ablex.
dc.identifier.citedreferenceHegedus, T. A., Carlone, H. B., & Carter, A. D. ( 2014 ). Shifts in the cultural production of “smartness” through engineering in elementary classrooms. In Proceedings of the 121st American Society for Engineering Education Annual Conference and Exposition. Indianapolis, IN.
dc.identifier.citedreferenceHofer, B. K., & Pintrich, P. R. ( 1997 ). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67 ( 1 ), 88 – 140.
dc.identifier.citedreferenceHofer, B. K., & Pintrich, P. R. (Eds.). ( 2002 ). Personal epistemology: The psychology of beliefs about knowledge and knowing. Mahwah: Erlbaum.
dc.identifier.citedreferenceHutchison, P., & Hammer, D. ( 2010 ). Attending to student epistemological framing in a science classroom. Science Education, 94 ( 3 ), 506 – 524.
dc.identifier.citedreferenceJiménez‐Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. ( 2000 ). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84 ( 6 ), 757 – 792.
dc.identifier.citedreferenceJohri, A., & Olds, B. ( 2011 ). Situated engineering learning: Bridging engineering education research and the learning sciences. Journal of Engineering Education, 100 ( 1 ), 151 – 185.
dc.identifier.citedreferenceJordan, B., & Henderson, A. ( 1995 ). Interaction analysis: Foundations and practice. The Journal of the Learning Sciences, 4 ( 1 ), 39 – 103.
dc.identifier.citedreferenceJordan, M. E., & McDaniel, R. R., Jr. ( 2014 ). Managing uncertainty during collaborative problem solving in elementary school teams: The role of peer influence in robotics engineering activity. The Journal of the Learning Sciences, 23 ( 4 ), 490 – 536.
dc.identifier.citedreferenceKang, N. H. ( 2008 ). Learning to teach science: Personal epistemologies, teaching goals, and practices of teaching. Teaching and Teacher Education, 24 ( 2 ), 478 – 498.
dc.identifier.citedreferenceKing, D., & English, L. ( 2016 ). Engineering design in the primary school: Applying STEM concepts to build an optical instrument. International Journal of Science Education, 38 ( 18 ), 2762 – 2794.
dc.identifier.citedreferenceKittleson, J. M., & Southerland, S. A. ( 2004 ). The role of discourse in group knowledge construction: A case study of engineering students. Journal of Research in Science Teaching, 41 ( 3 ), 267 – 293.
dc.identifier.citedreferenceKoretsky, M. D., Gilbuena, D. M., Nolen, S. B., Tierney, G., & Volet, S. E. ( 2014, October). Productively engaging student teams in engineering: The interplay between doing and thinking. In Frontiers in Education Conference (FIE), 2014. IEEE.
dc.identifier.citedreferenceLave, J., & Wenger, E. ( 1991 ). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceLee, C. S., McNeill, N. J., Douglas, E. P., Koro‐Ljungberg, M. E., & Therriault, D. J. ( 2013 ). Indispensable resource? A phenomenological study of textbook use in engineering problem solving. Journal of Engineering Education, 102 ( 2 ), 269 – 288.
dc.identifier.citedreferenceLemke, J. L. ( 1990 ). Talking science: Language, learning, and values. Norwood, NJ: Ablex Publishing.
dc.identifier.citedreferenceLemke, J. L. ( 1998 ). Analysing verbal data: Principles, methods, and problems. In K. Tobin & B. Fraswer (Eds.), International handbook of science education (pp. 1175 – 1189 ). Dordrecht, The Netherlands: Kluwer Academic.
dc.identifier.citedreferenceLevin, D. M., Hammer, D., & Coffey, J. E. ( 2009 ). Novice teachers’ attention to student thinking. Journal of Teacher Education, 60 ( 2 ), 142 – 154.
dc.identifier.citedreferenceLidar, M., Lundqvist, E., & Östman, L. ( 2006 ). Teaching and learning in the science classroom: The interplay between teachers’ epistemological moves and students’ practical epistemology. Science Education, 90 ( 1 ), 148 – 163.
dc.identifier.citedreferenceLising, L., & Elby, A. ( 2005 ). The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics, 73 ( 4 ), 372 – 382.
dc.identifier.citedreferenceLouca, L., Elby, A., Hammer, D., & Kagey, T. ( 2004 ). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39 ( 1 ), 57 – 68.
dc.identifier.citedreferenceMangiante, E. S., & Moore, A. ( 2016 ). Attending, analyzing, and responding to student thinking for engineering design. Paper presented at the 2016 National Association for Research in Science Teaching Annual International Conference, Baltimore, MD, 14–17 April.
dc.identifier.citedreferenceMcCormick, M. E., & Hammer, D. ( 2016 ). Stable beginnings in engineering design. Journal of Pre‐College Engineering Education Research (J‐PEER), 6 ( 1 ), 4.
dc.identifier.citedreferenceMcFadden, J., & Roehrig, G. ( 2018 ). Engineering design in the elementary science classroom: Supporting student discourse during an engineering design challenge. International Journal of Technology and Design Education, https://doi.org/10.1007/s10798-018-9444-5.
dc.identifier.citedreferenceMcNeill, N. J., Douglas, E. P., Koro‐Ljungberg, M., Therriault, D. J., & Krause, I. ( 2016 ). Undergraduate students’ beliefs about engineering problem solving. Journal of Engineering Education, 105 ( 4 ), 560 – 584.
dc.identifier.citedreferenceMerriam, S. B. ( 1998 ). Qualitative research and case study applications in education. San Francisco: Jossey Bass.
dc.identifier.citedreferenceMiles, M. B., & Huberman, A. M. ( 1994 ). Qualitative data analysis: An expanded sourcebook ( 2nd ed. ). Thousand Oaks, CA: Sage Publications.
dc.identifier.citedreferenceMiller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. ( 2018 ). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. Journal of Research in Science Teaching, 55 ( 7 ), 1053 – 1075.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.