Show simple item record

FORESAIL-1 CubeSat Mission to Measure Radiation Belt Losses and Demonstrate Deorbiting

dc.contributor.authorPalmroth, M.
dc.contributor.authorPraks, J.
dc.contributor.authorVainio, R.
dc.contributor.authorJanhunen, P.
dc.contributor.authorKilpua, E. K. J.
dc.contributor.authorAfanasiev, A.
dc.contributor.authorAla‐lahti, M.
dc.contributor.authorAlho, A.
dc.contributor.authorAsikainen, T.
dc.contributor.authorAsvestari, E.
dc.contributor.authorBattarbee, M.
dc.contributor.authorBinios, A.
dc.contributor.authorBosser, A.
dc.contributor.authorBrito, T.
dc.contributor.authorDubart, M.
dc.contributor.authorEnvall, J.
dc.contributor.authorGanse, U.
dc.contributor.authorGanushkina, N. Yu.
dc.contributor.authorGeorge, H.
dc.contributor.authorGieseler, J.
dc.contributor.authorGood, S.
dc.contributor.authorGrandin, M.
dc.contributor.authorHaslam, S.
dc.contributor.authorHedman, H.‐p.
dc.contributor.authorHietala, H.
dc.contributor.authorJovanovic, N.
dc.contributor.authorKakakhel, S.
dc.contributor.authorKalliokoski, M.
dc.contributor.authorKettunen, V. V.
dc.contributor.authorKoskela, T.
dc.contributor.authorLumme, E.
dc.contributor.authorMeskanen, M.
dc.contributor.authorMorosan, D.
dc.contributor.authorMughal, M. Rizwan
dc.contributor.authorNiemelä, P.
dc.contributor.authorNyman, S.
dc.contributor.authorOleynik, P.
dc.contributor.authorOsmane, A.
dc.contributor.authorPalmerio, E.
dc.contributor.authorPeltonen, J.
dc.contributor.authorPfau‐kempf, Y.
dc.contributor.authorPlosila, J.
dc.contributor.authorPolkko, J.
dc.contributor.authorPoluianov, S.
dc.contributor.authorPomoell, J.
dc.contributor.authorPrice, D.
dc.contributor.authorPunkkinen, A.
dc.contributor.authorPunkkinen, R.
dc.contributor.authorRiwanto, B.
dc.contributor.authorSalomaa, L.
dc.contributor.authorSlavinskis, A.
dc.contributor.authorSäntti, T.
dc.contributor.authorTammi, J.
dc.contributor.authorTenhunen, H.
dc.contributor.authorToivanen, P.
dc.contributor.authorTuominen, J.
dc.contributor.authorTurc, L.
dc.contributor.authorValtonen, E.
dc.contributor.authorVirtanen, P.
dc.contributor.authorWesterlund, T.
dc.date.accessioned2019-09-30T15:32:18Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:32:18Z
dc.date.issued2019-07
dc.identifier.citationPalmroth, M.; Praks, J.; Vainio, R.; Janhunen, P.; Kilpua, E. K. J.; Afanasiev, A.; Ala‐lahti, M. ; Alho, A.; Asikainen, T.; Asvestari, E.; Battarbee, M.; Binios, A.; Bosser, A.; Brito, T.; Dubart, M.; Envall, J.; Ganse, U.; Ganushkina, N. Yu.; George, H.; Gieseler, J.; Good, S.; Grandin, M.; Haslam, S.; Hedman, H.‐p. ; Hietala, H.; Jovanovic, N.; Kakakhel, S.; Kalliokoski, M.; Kettunen, V. V.; Koskela, T.; Lumme, E.; Meskanen, M.; Morosan, D.; Mughal, M. Rizwan; Niemelä, P. ; Nyman, S.; Oleynik, P.; Osmane, A.; Palmerio, E.; Peltonen, J.; Pfau‐kempf, Y. ; Plosila, J.; Polkko, J.; Poluianov, S.; Pomoell, J.; Price, D.; Punkkinen, A.; Punkkinen, R.; Riwanto, B.; Salomaa, L.; Slavinskis, A.; Säntti, T. ; Tammi, J.; Tenhunen, H.; Toivanen, P.; Tuominen, J.; Turc, L.; Valtonen, E.; Virtanen, P.; Westerlund, T. (2019). "FORESAIL-1 CubeSat Mission to Measure Radiation Belt Losses and Demonstrate Deorbiting." Journal of Geophysical Research: Space Physics 124(7): 5783-5799.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/151346
dc.description.abstractToday, the near-Earth space is facing a paradigm change as the number of new spacecraft is literally skyrocketing. Increasing numbers of small satellites threaten the sustainable use of space, as without removal, space debris will eventually make certain critical orbits unusable. A central factor affecting small spacecraft health and leading to debris is the radiation environment, which is unpredictable due to an incomplete understanding of the near-Earth radiation environment itself and its variability driven by the solar wind and outer magnetosphere. This paper presents the FORESAIL-1 nanosatellite mission, having two scientific and one technological objectives. The first scientific objective is to measure the energy and flux of energetic particle loss to the atmosphere with a representative energy and pitch angle resolution over a wide range of magnetic local times. To pave the way to novel model-in situ data comparisons, we also show preliminary results on precipitating electron fluxes obtained with the new global hybrid-Vlasov simulation Vlasiator. The second scientific objective of the FORESAIL-1 mission is to measure energetic neutral atoms of solar origin. The solar energetic neutral atom flux has the potential to contribute importantly to the knowledge of solar eruption energy budget estimations. The technological objective is to demonstrate a satellite deorbiting technology, and for the first time, make an orbit maneuver with a propellantless nanosatellite. FORESAIL-1 will demonstrate the potential for nanosatellites to make important scientific contributions as well as promote the sustainable utilization of space by using a cost-efficient deorbiting technology.Key PointsFORESAIL-1 mission measures energetic electron precipitation and solar energetic neutral atom fluxWe will demonstrate a cost-efficient deorbiting and orbit maneuvering technology without propellantsThe goal of the mission is to contribute significantly to the sustainable utilization of space
dc.publisherNational Aeronautics and Space Administration
dc.publisherWiley Periodicals, Inc.
dc.subject.othernanosatellite
dc.subject.otherspace physics
dc.subject.otherparticle precipitation
dc.subject.othersolar energetic neutral atoms
dc.subject.otherdeorbiting
dc.subject.otherradiation belts
dc.titleFORESAIL-1 CubeSat Mission to Measure Radiation Belt Losses and Demonstrate Deorbiting
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151346/1/jgra54986.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151346/2/jgra54986_am.pdf
dc.identifier.doi10.1029/2018JA026354
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceNakamura, R., Isowa, M., Kamide, Y., Baker, D. N., Blake, J. B., & Looper, M. ( 2000 ). SAMPEX observations of precipitation bursts in the outer radiation belt. Journal of Geophysical Research, 105, 15,875 - 15,886. https://doi.org/10.1029/2000JA900018
dc.identifier.citedreferenceAsikainen, T., & Mursula, K. ( 2013 ). Correcting the NOAA/MEPED energetic electron fluxes for detector efficiency and proton contamination. Journal of Geophysical Research: Space Physics, 118, 6500 - 6510. https://doi.org/10.1002/jgra.50584
dc.identifier.citedreferenceBaker, D. N., & Kanekal, S. G. ( 2008 ). Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 195 - 206. https://doi.org/10.1016/j.jastp.2007.08.031
dc.identifier.citedreferenceBarcus, J. R., Brown, R. R., Karas, R. H., Brønstad, K., Trefall, H., Kodama, M., & Rosenberg, T. J. ( 1973 ). Balloon observations of auroral-zone X-rays in conjugate regions. Journal of Atmospheric and Terrestrial Physics, 35, 497 - 511. https://doi.org/10.1016/0021-9169(73)90039-1
dc.identifier.citedreferenceBarthelemy, M., Vladimir, K., Anne, V., Frédéric, R., Sebastien, P., & Laurence, C. ( 2018 ). AMICal and ATISE: Two CubeSats optical payload for space weather monitoring. In Egu general assembly conference abstracts. (Vol. 20, p. 10580 ).
dc.identifier.citedreferenceBastida Virgili, B., Dolado, J. C., Lewis, H. G., Radtke, J., Krag, H., Revelin, B., Cazaux, C., Colombo, C., Crowther, R., & Metz, M. ( 2016 ). Risk to space sustainability from large constellations of satellites. Acta Astronautica, 126, 154 - 162. https://doi.org/10.1016/j.actaastro.2016.03.034
dc.identifier.citedreferenceBekey, I. ( 1997 ). Project Orion: Orbital debris removal using ground-based sensors and lasers. In B. Kaldeich-Schuermann (Ed.), Second european conference on space debris (Vol.  393, pp. 699 ). Albama: National Aeronautics and Space Administration.
dc.identifier.citedreferenceBonnal, C., Ruault, J.-M., & Desjean, M.-C. ( 2013 ). Active debris removal: Recent progress and current trends. Acta Astronautica, 85, 51 - 60. https://doi.org/10.1016/j.actaastro.2012.11.009
dc.identifier.citedreferenceBradley, A. M., & Wein, L. M. ( 2009 ). Space debris: Assessing risk and responsibility. Advances in Space Research, 43 ( 9 ), 1372 - 1390. https://doi.org/10.1016/j.asr.2009.02.006
dc.identifier.citedreferenceCampbell, J. W. ( 2000 ). Using lasers in space: Laser orbital debris removal and asteroid deflection ( Occasional Paper No. 20 ). Alabama: Air University: Maxwell Air Force Base.
dc.identifier.citedreferenceChen, Y., Reeves, G. D., & Friedel, R. H. W. ( 2007 ). The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Physics, 3, 614 - 617. https://doi.org/10.1038/nphys655
dc.identifier.citedreferenceChilds, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E. W., Camp, D., Rübel, O., Favre, M. J., & Durant Navr’atil, P. ( 2012 ). VisIt: An end-user tool for visualizing and analyzing very large data, High performance visualization-enabling extreme-scale scientific insight (pp. 357 - 372 ). Boca Raton, Florida: Chapman & Hall / CRC.
dc.identifier.citedreferenceCrew, A. B., Spence, H. E., Blake, J. B., Klumpar, D. M., Larsen, B. A., O’Brien, T. P., Driscoll, S., Handley, M., Legere, J., Longworth, S., Mashburn, K., Mosleh, E., Ryhajlo, N., Smith, S., Springer, L., & Widholm, M. ( 2016 ). First multipoint in situ observations of electron microbursts: Initial results from the NSF FIREBIRD II mission. Journal of Geophysical Research: Space Physics, 121, 5272 - 5283. https://doi.org/10.1002/2016JA022485
dc.identifier.citedreferenceElkington, S. R., Hudson, M. K., & Chan, A. A. ( 2003 ). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. Journal of Geophysical Research, 108 ( A3 ), 1116. https://doi.org/10.1029/2001JA009202
dc.identifier.citedreferenceEmslie, A. G., Kucharek, H., Dennis, B. R., Gopalswamy, N., Holman, G. D., Share, G. H., Vourlidas, A., Forbes, T. G., Gallagher, P. T., Mason, G. M., Metcalf, T. R., Mewaldt, R. A., Murphy, R. J., Schwartz, R. A., & Zurbuchen, T. H. ( 2004 ). Energy partition in two solar flare/CME events. Journal of Geophysical Research, 109, A10104. https://doi.org/10.1029/2004JA010571
dc.identifier.citedreferenceEuropean Space Agency ( 2014 ). Space debris mitigation policy for agency projects. reference ESA/ADMIN/IPOL(2014)2 and annexes. [Computer software manual].
dc.identifier.citedreferenceEvans, D. S., & Greer, M. S. ( 2000 ). Polar Orbiting Environmental Satellite Space Environment Monitor-2: Instrument description and archive data documentation. Boulder: US Department of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research Laboratories, Space Environment Center.
dc.identifier.citedreferenceEvans, D. S., & Greer, M. S. ( 2006 ). SEM-2 documentation for NOAA-15 and later satellites, version 2v2.0, Rev 2006. https://ngdc.noaa.gov/stp/satellite/poes/documentation.html (Accessed: 2018-11-23)
dc.identifier.citedreferencefor Standardization, I. O ( 2011 ). Space systems-Space debris mitigation requirements [Computer software manual].
dc.identifier.citedreferenceGraf, K. L., Inan, U. S., Piddyachiy, D., Kulkarni, P., Parrot, M., & Sauvaud, J. A. ( 2009 ). DEMETER observations of transmitter-induced precipitation of inner radiation belt electrons. Journal of Geophysical Research, 114, A07205. https://doi.org/10.1029/2008JA013949
dc.identifier.citedreferenceGrandin, M., Kero, A., Partamies, N., McKay, D., Whiter, D., Kozlovsky, A., & Miyoshi, Y. ( 2017 ). Observation of pulsating aurora signatures in cosmic noise absorption data. Geophysical Research Letters, 44, 5292 - 5300. https://doi.org/10.1002/2017GL073901
dc.identifier.citedreferenceHannuksela, O., & the Vlasiator team ( 2019 ). Analysator: Python analysis toolkit. Github repository. Retrieved from https://github.com/fmihpc/analysator/ (last access: 09.05.2019).
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., & Holeman, E. ( 1985 ). A statistical model of auroral electron precipitation. Journal of Geophysical Research, 90, 4229 - 4248. https://doi.org/10.1029/JA090iA05p04229
dc.identifier.citedreferenceHargreaves, J. K. ( 1969 ). Auroral absorption of HF radio waves in the ionosphere: A review of results from the first decade of riometry. IEEE Proceedings, 57, 1348 - 1373. https://doi.org/10.1109/PROC.1969.7275
dc.identifier.citedreferenceJanhunen, P. ( 2004 ). Electric sail for spacecraft propulsion. Journal of Propulsion and Power, 20 ( 4 ), 763 - 764. https://doi.org/10.2514/1.8580
dc.identifier.citedreferenceJanhunen, P. ( 2011 ). Electrostatic plasma brake for deorbiting a satellite. Journal of Propulsion and Power, 26, 370 - 372. https://doi.org/10.2514/1.47537
dc.identifier.citedreferenceJanhunen, P. ( 2014 ). Simulation study of the plasma-brake effect. Annals of Geophysics, 32, 1207 - 1216. https://doi.org/10.5194/angeo-32-1207-2014
dc.identifier.citedreferenceKennel, C. F., & Petschek, H. E. ( 1966 ). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71, 1 - 28. https://doi.org/10.1029/JZ071i001p00001
dc.identifier.citedreferenceKero, A., Vierinen, J., McKay-Bukowski, D., Enell, C.-F., Sinor, M., Roininen, L., & Ogawa, Y. ( 2014 ). Ionospheric electron density profiles inverted from a spectral riometer measurement. Geophysical Research Letters, 41, 5370 - 5375. https://doi.org/10.1002/2014GL060986
dc.identifier.citedreferenceKessler, D. J., & Cour-Palais, B. G. ( 1978 ). Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research, 83 ( A6 ), 2637 - 2646. https://doi.org/10.1029/JA083iA06p02637
dc.identifier.citedreferenceKim, H.-J., & Chan, A. A. ( 1997 ). Fully adiabatic changes in storm time relativistic electron fluxes. Journal of Geophysical Research, 102, 22,107 - 22,116. https://doi.org/10.1029/97JA01814
dc.identifier.citedreferenceKlinkrad, H. ( 1993 ). Collision risk analysis for low Earth orbits. Advances in Space Research, 13, 177 - 186. https://doi.org/10.1016/0273-1177(93)90588-3
dc.identifier.citedreferenceKohnert, R., Palo, S., & Li, X. ( 2011 ). Small space weather research mission designed fully by students. Space Weather, 9, S04006. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011SW000668, https://doi.org/10.1029/2011SW000668
dc.identifier.citedreferenceLappas, V., Adeli, N., Visagie, L., Fernandez, J., Theodorou, T., Steyn, W., & Perren, M. ( 2011 ). CubeSail: A low cost CubeSat based solar sail demonstration mission. Advances in Space Research, 48, 1890 - 1901. https://doi.org/10.1016/j.asr.2011.05.033
dc.identifier.citedreferenceLi, X., Baker, D. N., Kanekal, S. G., Looper, M., & Temerin, M. ( 2001 ). Long term measurements of radiation belts by SAMPEX and their variations. Geophysical Research Letters, 28, 3827 - 3830. https://doi.org/10.1029/2001GL013586
dc.identifier.citedreferenceLi, X., Baker, D. N., Temerin, M., Larson, D., Lin, R. P., Reeves, G. D., Looper, M., Kanekal, S. G., & Mewaldt, R. A. ( 1997 ). Are energetic electrons in the solar wind the source of the outer radiation belt? Geophysical Research Letters, 24, 923 - 926. https://doi.org/10.1029/97GL00543
dc.identifier.citedreferenceMann, I. R., Ozeke, L. G., Murphy, K. R., Claudepierre, S. G., Turner, D. L., Baker, D. N., Rae, I. J., Kale, A., Milling, D. K., Boyd, A. J., Spence, H. E., Reeves, G. D., Singer, H. J., Dimitrakoudis, S., Daglis, I. A., & Honary, F. ( 2016 ). Explaining the dynamics of the ultrarelativistic third Van Allen radiation belt. Nature Physics, 12, 978 - 983. https://doi.org/10.1038/nphys3799
dc.identifier.citedreferenceMarchaudon, A., & Blelly, P.-L. ( 2015 ). A new interhemispheric 16-moment model of the plasmasphere-ionosphere system: IPIM. Journal of Geophysical Research: Space Physics, 120, 5728 - 5745. https://doi.org/10.1002/2015JA021193
dc.identifier.citedreferenceMatsumura, C., Miyoshi, Y., Seki, K., Saito, S., Angelopoulos, V., & Koller, J. ( 2011 ). Outer radiation belt boundary location relative to the magnetopause: Implications for magnetopause shadowing. Journal of Geophysical Research, 116, A06212. https://doi.org/10.1029/2011JA016575
dc.identifier.citedreferenceMcDiarmid, I. B., Burrows, J. R., & Budzinski, E. E. ( 1975 ). Average characteristics of magnetospheric electrons (150 eV to 200 keV) at 1400 km. Journal of Geophysical Research, 80, 73 - 79. https://doi.org/10.1029/JA080i001p00073
dc.identifier.citedreferenceMcIlwain, C. E. ( 1966 ). Ring current effects on trapped particles. Journal of Geophysical Research, 71, 3623 - 3628. https://doi.org/10.1029/JZ071i015p03623
dc.identifier.citedreferenceMcKay-Bukowski, D., Vierinen, J., Virtanen, I. I., Fallows, R., Postila, M., Ulich, T., Wucknitz, O., Brentjens, M., Ebbendorf, N., Enell, C.-F., Gerbers, M., Grit, T., Gruppen, P., Kero, A., Iinatti, T., Lehtinen, M., Meulman, H., Norden, M., Orispaa, M., Raita, T, de Reijer, J. P., Roininen, L., Schoenmakers, A., Stuurwold, K., & Turunen, E. ( 2015 ). KAIRA: The Kilpisjärvi atmospheric imaging receiver array-System overview and first results. IEEE Transactions on Geoscience and Remote Sensing, 53, 1440 - 1451. https://doi.org/10.1109/TGRS.2014.2342252
dc.identifier.citedreferenceMewaldt, R. A., Leske, R. A., Stone, E. C., Barghouty, A. F., Labrador, A. W., Cohen, C. M. S., Cummings, A. C., Davis, A. J., von Rosenvinge, T. T., & Wiedenbeck, M. E. ( 2009 ). STEREO observations of energetic neutral hydrogen atoms during the 2006 December 5 solar flare. The Astrophysical Journal, 693, L11 - L15. https://doi.org/10.1088/0004-637X/693/1/L11
dc.identifier.citedreferenceMillan, R. M., & the BARREL Team ( 2011 ). Understanding relativistic electron losses with BARREL. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 1425 - 1434. https://doi.org/10.1016/j.jastp.2011.01.006
dc.identifier.citedreferenceMillan, R. M., & Thorne, R. M. ( 2007 ). Review of radiation belt relativistic electron losses. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 362 - 377. https://doi.org/10.1016/j.jastp.2006.06.019
dc.identifier.citedreferenceMiyoshi, Y., Oyama, S., Saito, S., Kurita, S., Fujiwara, H., Kataoka, R., Ebihara, Y., Kletzing, C., Reeves, G., Santolik, O., Clilverd, M., Rodger, C. J., Turunen, E., & Tsuchiya, F. ( 2015 ). Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. Journal of Geophysical Research: Space Physics, 120, 2754 - 2766. https://doi.org/10.1002/2014JA020690
dc.identifier.citedreferenceMughal, M. R., Ali, A., & Reyneri, L. M. ( 2014 ). Plug-and-play design approach to smart harness for modular small satellites. Acta Astronautica, 94 ( 2 ), 754 - 764. Retrieved from http://www.sciencedirect.com/science/article/pii/S009457651300369X https://doi.org/10.1016/j.actaastro.2013.09.015
dc.identifier.citedreferenceNoman, M., Zulqamain, S. M., Mughal, M. R., Ali, A., & Reyneri, L. M. ( 2017 ). Component selection for magnetic attitude subsystem of PNSS-1 small satellite. In 2017 8th international conference on recent advances in space technologies (rast) (pp. 361 - 367 ). https://doi.org/10.1109/RAST.2017.8002959
dc.identifier.citedreferenceNygrén, T., Aikio, A. T., Kuula, R., & Voiculescu, M. ( 2011 ). Electric fields and neutral winds from monostatic incoherent scatter measurements by means of stochastic inversion. Journal of Geophysical Research, 116, A05305. https://doi.org/10.1029/2010JA016347
dc.identifier.citedreferenceOleynik, P., & Vainio, R. ( 2019 ). Raw simulation data of response of the PATE particle telescope to electrons. [Data set]. Zenodo. https://doi.org/10.5281/zenodo.2682547
dc.identifier.citedreferencePalmroth, M. ( 2019 ). Vlasiator. Web site. Retrieved from http://www.physics.helsinki.fi/vlasiator/ (last access: 09.05.2019).
dc.identifier.citedreferencePalmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T., Grandin, M., Hoilijoki, S., Sandroos, A., & von Alfthan, S. ( 2018 ). Vlasov methods in space physics and astrophysics. Living Reviews in Computational Astrophysics, 4, 1. https://doi.org/10.1007/s41115-018-0003-2
dc.identifier.citedreferencePalmroth, M., & the Vlasiator team ( 2019 ). Vlasiator: Hybrid-Vlasov simulation code. Github repository. Retrieved from https://github.com/fmihpc/vlasiator/ (Version 3.0, last access: 09.05.2019).
dc.identifier.citedreferencePhipps, C. R., Baker, K. L., Libby, S. B., Liedahl, D. A., Olivier, S. S., Pleasance, L. D., Rubenchik, A., Trebes, J. E., Victor George, E., Marcovici, B., Reilly, J. P., & Valley, M. T. ( 2012 ). Removing orbital debris with lasers. Advances in Space Research, 49 ( 9 ), 1283 - 1300. https://doi.org/10.1016/j.asr.2012.02.003
dc.identifier.citedreferencePytte, T., Trefall, H., Kremser, G., Jalonen, L., & Riedler, W. ( 1976 ). On the morphology of energetic /not less than 30 keV/ electron precipitation during the growth phase of magnetospheric substorms. Journal of Atmospheric and Terrestrial Physics, 38, 739 - 755. https://doi.org/10.1016/0021-9169(76)90112-4
dc.identifier.citedreferenceReeves, G. D., McAdams, K. L., Friedel, R. H. W., & O’Brien, T. P. ( 2003 ). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophysical Research Letters, 30 ( 10 ), 1529. https://doi.org/10.1029/2002GL016513
dc.identifier.citedreferenceRodger, C. J., Kavanagh, A. J., Clilverd, M. A., & Marple, S. R. ( 2013 ). Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes. Journal of Geophysical Research: Space Physics, 118, 7810 - 7821. https://doi.org/10.1002/2013JA019439
dc.identifier.citedreferenceSaito, S., Miyoshi, Y., & Seki, K. ( 2010 ). A split in the outer radiation belt by magnetopause shadowing: Test particle simulations. Journal of Geophysical Research, 115, A08210. https://doi.org/10.1029/2009JA014738
dc.identifier.citedreferenceSandroos, A. ( 2019 ). Vlsv: File format and tools. Github repository. Retrieved from https://github.com/fmihpc/vlsv/ (last access: 09.05.2019).
dc.identifier.citedreferenceSauvaud, J. A., Moreau, T., Maggiolo, R., Treilhou, J. P., Jacquey, C., Cros, A., Coutelier, J., Rouzaud, J., Penou, E., & Gangloff, M. ( 2006 ). High-energy electron detection onboard DEMETER: The IDP spectrometer, description and first results on the inner belt. Planetary and Space Science, 54, 502 - 511. https://doi.org/10.1016/j.pss.2005.10.019
dc.identifier.citedreferenceSeppänen, H., Kiprich, S., Kurppa, R., Janhunen, P., & Hægström, E. ( 2011 ). Wire-to-wire bonding of μm-diameter aluminum wires for the electric solar wind sail. Microelectronic Engineering, 88, 3267 - 3269. https://doi.org/10.1016/j.mee.2011.07.002
dc.identifier.citedreferenceShain, C. A. ( 1951 ). Galactic radiation at 18.3 Mc/s. Australian Journal of Scientific Research A Physical Sciences, 4, 258. https://doi.org/10.1071/PH510258
dc.identifier.citedreferenceShprits, Y. Y., Angelopoulos, V., Russell, C. T., Strangeway, R. J., Runov, A., Turner, D., Caron, R., Cruce, P., Leneman, D., Michaelis, I., Petrov, V., Panasyuk, M., Yashin, I., Drozdov, A., Russell, C. L., Kalegaev, V., Nazarkov, I., & Clemmons, J. H. ( 2018 ). Scientific objectives of Electron Losses and Fields INvestigation onboard Lomonosov satellite. Space Science Reviews, 214, 25. https://doi.org/10.1007/s11214-017-0455-4
dc.identifier.citedreferenceShprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. ( 2008 ). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694 - 1713. https://doi.org/10.1016/j.jastp.2008.06.014
dc.identifier.citedreferenceShprits, Y. Y., Thorne, R. M., Horne, R. B., Glauert, S. A., Cartwright, M., Russell, C. T., Baker, D. N., & Kanekal, S. G. ( 2006 ). Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm. Geophysical Research Letters, 33, L05104. https://doi.org/10.1029/2005GL024256
dc.identifier.citedreferenceSimnett, G. M. ( 2011 ). Energetic neutral atoms from the Sun: An alternative interpretation of a unique event. Astronomy & Astrophysics, 531, A46. https://doi.org/10.1051/0004-6361/201116429
dc.identifier.citedreferenceSpiro, R. W., Reiff, P. H., & Maher, L. J. Jr. ( 1982 ). Precipitating electron energy flux and auroral zone conductances-An empirical model. Journal of Geophysical Research, 87, 8215 - 8227. https://doi.org/10.1029/JA087iA10p08215
dc.identifier.citedreferenceThorne, R. M. ( 1974 ). A possible cause of dayside relativistic electron precipitation events. Journal of Atmospheric and Terrestrial Physics, 36, 635. https://doi.org/10.1016/0021-9169(74)90087-7
dc.identifier.citedreferenceThorne, R. M. ( 2010 ). Radiation belt dynamics: The importance of wave-particle interactions. Geophysical Research Letters, 37, L22107. https://doi.org/10.1029/2010GL044990
dc.identifier.citedreferenceThorne, R. M., & Kennel, C. F. ( 1971 ). Relativistic electron precipitation during magnetic storm main phase. Journal of Geophysical Research, 76, 4446. https://doi.org/10.1029/JA076i019p04446
dc.identifier.citedreferenceTsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Yonekura, K., Hoshino, H., & Kawaguchi, J. ( 2013 ). Achievement of IKAROS-Japanese deep space solar sail demonstration mission. Acta Astronautica, 82, 183 - 188. https://doi.org/10.1016/j.actaastro.2012.03.032
dc.identifier.citedreferenceTu, W., Selesnick, R., Li, X., & Looper, M. ( 2010 ). Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX. Journal of Geophysical Research, 115, A07210. https://doi.org/10.1029/2009JA014949
dc.identifier.citedreferenceTummala, A. R., & Dutta, A. ( 2017 ). An overview of cube-satellite propulsion technologies and trends. Aerospace, 4 ( 4 ), 58. https://doi.org/10.3390/aerospace4040058
dc.identifier.citedreferenceTurner, D. L., Angelopoulos, V., Li, W., Bortnik, J., Ni, B., Ma, Q., Thorne, R. M., Morley, S. K., Henderson, M. G., Reeves, G. D., Usanova, M., Mann, I. R., Claudepierre, S. G., Blake, J. B., Baker, D. N., Huang, C.-L., Spence, H., Kurth, W., Kletzing, C., & Rodriguez, J. V. ( 2014 ). Competing source and loss mechanisms due to wave-particle interactions in Earth’s outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 119, 1960 - 1979. https://doi.org/10.1002/2014JA019770
dc.identifier.citedreferenceTverskoy, B. A. ( 1969 ). Main mechanisms in the formation of the Earth’s radiation belts. Reviews of Geophysics and Space Physics, 7, 219 - 231. https://doi.org/10.1029/RG007i001p00219
dc.identifier.citedreferenceUkhorskiy, A. Y., Anderson, B. J., Brandt, P. C., & Tsyganenko, N. A. ( 2006 ). Storm time evolution of the outer radiation belt: Transport and losses. Journal of Geophysical Research, 111, A11S03. https://doi.org/10.1029/2006JA011690
dc.identifier.citedreferencevan Allen, J. A., & Frank, L. A. ( 1959 ). Radiation around the Earth to a radial distance of 107,400 km. Nature, 183, 430 - 434. https://doi.org/10.1038/183430a0
dc.identifier.citedreferencevan de Kamp, M., Seppälä, A., Clilverd, M. A., Rodger, C. J., Verronen, P. T., & Whittaker, I. C. ( 2016 ). A model providing long-term data sets of energetic electron precipitation during geomagnetic storms. Journal of Geophysical Research: Atmospheres, 121, 12,520 - 12,540. https://doi.org/10.1002/2015JD024212
dc.identifier.citedreferencevon Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I., Sandroos, A., & Palmroth, M. ( 2014 ). Vlasiator: First global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath. Journal of Atmospheric and Solar-Terrestrial Physics, 120, 24 - 35. https://doi.org/10.1016/j.jastp.2014.08.012
dc.identifier.citedreferenceWalt, M. ( 1996 ). Source and loss processes for radiation belt particles. Washington DC American Geophysical Union Geophysical Monograph Series, 97, 1. https://doi.org/10.1029/GM097p0001
dc.identifier.citedreferenceWest, H. I., Buck, R. M., & Walton, J. R. ( 1972 ). Shadowing of electron azimuthal-drift motions near the noon magnetopause. Nature Physical Science, 240, 6 - 7. https://doi.org/10.1038/physci240006a0
dc.identifier.citedreferenceWoodger, L. A., Halford, A. J., Millan, R. M., McCarthy, M. P., Smith, D. M., Bowers, G. S., Sample, J. G., Anderson, B. R., & Liang, X. ( 2015 ). A summary of the BARREL campaigns: Technique for studying electron precipitation. Journal of Geophysical Research: Space Physics, 120, 4922 - 4935. https://doi.org/10.1002/2014JA020874
dc.identifier.citedreferenceAgostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J. J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F. W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M. G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J. P., Wenaus, T., Williams, D. C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D., & GEANT4 Collaboration ( 2003 ). GEANT4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research A, 506, 250 - 303. https://doi.org/10.1016/S0168-9002(03)01368-8
dc.identifier.citedreferenceAli, A., Mughal, M., Ali, H., & Reyneri, L. ( 2014 ). Innovative power management, attitude determination and control tile for CubeSat standard nanosatellites. Acta Astronautica, 96, 116 - 127. Retrieved from http://www.sciencedirect.com/science/article/pii/S0094576513004165, https://doi.org/10.1016/j.actaastro.2013.11.013
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.