Show simple item record

MMS Multi-Point Analysis of FTE Evolution: Physical Characteristics and Dynamics

dc.contributor.authorAkhavan‐tafti, M.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorEastwood, J. P.
dc.contributor.authorCassak, P. A.
dc.contributor.authorGershman, D. J.
dc.date.accessioned2019-09-30T15:32:37Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:32:37Z
dc.date.issued2019-07
dc.identifier.citationAkhavan‐tafti, M. ; Slavin, J. A.; Eastwood, J. P.; Cassak, P. A.; Gershman, D. J. (2019). "MMS Multi-Point Analysis of FTE Evolution: Physical Characteristics and Dynamics." Journal of Geophysical Research: Space Physics 124(7): 5376-5395.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/151362
dc.description.abstractPrevious studies have indicated that flux transfer events (FTEs) grow as they convect away from the reconnection site along the magnetopause. This increase in FTE diameter may occur via adiabatic expansion in response to decreasing external pressure away from the subsolar region or due to a continuous supply of magnetic flux and plasma to the FTEs’ outer layers by magnetic reconnection. Here we investigate an ensemble of 55 FTEs at the subsolar magnetopause using Magnetospheric Multiscale (MMS) multi-point measurements. The FTEs are initially modeled as quasi-force-free flux ropes in order to infer their geometry and the spacecraft trajectory relative to their central axis. The MMS observations reveal a radially-inward net force at the outer layers of FTEs which can accelerate plasmas and fields toward the FTE’s core region. Inside the FTEs, near the central axis, plasma density is found to decrease as the axial net force increases. It is interpreted that the axial net force accelerates plasmas along the axis in the region of compressing field lines. Statistical analysis of the MMS observations of the 55 FTEs indicates that plasma pressure, Pth, decreases with increasing FTE diameter, λ, as Pth,obsv - λ-0.24. Assuming that all 55 FTEs started out with similar diameters, this rate of plasma pressure decrease with increasing FTE diameter is at least an order of magnitude slower than the theoretical rate for adiabatic expansion (i.e., Pth,adiab. - λ-3.3), suggesting the presence of efficient plasma heating mechanisms, such as magnetic reconnection, to facilitate FTE growth.Key PointsThe forces inside FTEs observed by MMS suggest plasma acceleration toward and along the FTE’s central axis causing plasma to escapeThe roles of adiabatic expansion and reconnection in FTE growth are explored using MMS observationsThe observed sub-adiabatic decrease of plasma pressure as FTE size increases requires plasma heating mechanisms such as reconnection
dc.publisherWorld Scientific Publishing Company
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMagnetospheric Multiscale mission
dc.subject.otherFTE growth mechanisms
dc.subject.otherFTE coalescence
dc.subject.otherforce-free flux rope model
dc.subject.otherFTE evolution
dc.subject.otherflux transfer events
dc.titleMMS Multi-Point Analysis of FTE Evolution: Physical Characteristics and Dynamics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151362/1/jgra55065_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151362/2/jgra55065.pdf
dc.identifier.doi10.1029/2018JA026311
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRetinò, A., Nakamura, R., Vaivads, A., Khotyaintsev, Y., Hayakawa, T., Tanaka, K., Kasahara, S., Fujimoto, M., Shinohara, I., Eastwood, J. P., André, M., Baumjohann, W., Daly, P. W., Kronberg, E. A., & Cornilleau-Wehrlin, N. ( 2008 ). Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the Earth’s magnetotail. Journal of Geophysical Research, 113, A12215. https://doi.org/10.1029/2008JA013511
dc.identifier.citedreferenceSibeck, D. G., Lepping, R. P., & Lazarus, A. J. ( 1990 ). Magnetic field line draping in the plasma depletion layer. Journal of Geophysical Research, 95 ( A3 ), 2433 - 2440. https://doi.org/10.1029/JA095iA03p02433
dc.identifier.citedreferenceSlavin, J. A. ( 2003 ). Geotail observations of magnetic flux ropes in the plasma sheet. Journal of Geophysical Research, 108 ( A1 ), 1015. https://doi.org/10.1029/2002JA009557
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nieves-Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of a flux-transfer-event shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSmith, D. F. ( 1977 ). Current instability in reconnecting current sheets. Journal of Geophysical Research, 82 ( 4 ), 704 - 708. https://doi.org/10.1029/JA082i004p00704
dc.identifier.citedreferenceSong, H.-Q., Chen, Y., Li, G., Kong, X.-L., & Feng, S.-W. ( 2012 ). Coalescence of macroscopic magnetic islands and electron acceleration from STEREO observation. Physical Review X, 2 ( 2 ), 21015. https://doi.org/10.1103/PhysRevX.2.021015
dc.identifier.citedreferenceStanier, A., Daughton, W., Simakov, A. N., Chacón, L., Le, A., Karimabadi, H., Ng, J., & Bhattacharjee, A. ( 2017 ). The role of guide field in magnetic reconnection driven by island coalescence. Physics of Plasmas, 24 ( 2 ), 022124. https://doi.org/10.1063/1.4976712
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Tian, A. M., Bai, S. C., Poh, G. K., Akhavan-Tafti, M., Lu, S., Yao, S. T., Le, G., Nakamura, R., Giles, B. L., & Burch, J. L. ( 2019 ). MMS study of the structure of ion-scale flux ropes in the Earth’s cross-tail current sheet. Geophysical Research Letters. https://doi.org/10.1029/2019GL083301
dc.identifier.citedreferenceTaylor, J. ( 1986 ). Relaxation and magnetic reconnection in plasmas. Reviews of Modern Physics, 58 ( 3 ), 741 - 763. https://doi.org/10.1103/RevModPhys.58.741
dc.identifier.citedreferenceTeh, W. -L., Denton, R. E., Sonnerup, B. U. Ã ., & Pollock, C. ( 2017 ). MMS observations of oblique small-scale magnetopause flux ropes near the ion diffusion region during weak guide-field reconnection. Geophysical Research Letters, 44, 6517 - 6524. https://doi.org/10.1002/2017GL074291
dc.identifier.citedreferenceTeh, W.-L., Nakamura, T. K. M., Nakamura, R., Baumjohann, W., Russell, C. T., Pollock, C., Lindqvist, P. A., Ergun, R. E., Burch, J. L., Torbert, R. B., & Giles, B. L. ( 2017 ). Evolution of a typical ion-scale magnetic flux rope caused by thermal pressure enhancement. Journal of Geophysical Research: Space Physics, 122, 2040 - 2050. https://doi.org/10.1002/2016JA023777
dc.identifier.citedreferenceTian, H., Yao, S., Zong, Q., He, J., & Qi, Y. ( 2010 ). Signatures of magnetic reconnection at boundaries of interplanetary small-scale magnetic flux ropes. The Astrophysical Journal, 720 ( 1 ), 454 - 464. https://doi.org/10.1088/0004-637X/720/1/454
dc.identifier.citedreferenceTorbert, R. B., Russell, C. T., Magnes, W., Ergun, R. E., Lindqvist, P.-A., LeContel, O., Vaith, H., Macri, J., Myers, S., Rau, D., Needell, J., King, B., Granoff, M., Chutter, M., Dors, I., Olsson, G., Khotyaintsev, Y. V., Eriksson, A., Kletzing, C. A., Bounds, S., Anderson, B., Baumjohann, W., Steller, M., Bromund, K., le, G., Nakamura, R., Strangeway, R. J., Leinweber, H. K., Tucker, S., Westfall, J., Fischer, D., Plaschke, F., Porter, J., & Lappalainen, K. ( 2016 ). The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Science Reviews, 199 ( 1-4 ), 105 - 135. https://doi.org/10.1007/s11214-014-0109-8
dc.identifier.citedreferenceTóth, G., Chen, Y., Gombosi, T. I., Cassak, P., Markidis, S., & Peng, I. B. ( 2017 ). Scaling the ion inertial length and its implications for modeling reconnection in global simulations. Journal of Geophysical Research: Space Physics, 122, 10,336 - 10,355. https://doi.org/10.1002/2017JA024189
dc.identifier.citedreferenceWang, R., Lu, Q., Nakamura, R., Baumjohann, W., Russell, C. T., Burch, J. L., Ergun, R. E., Lindqvist, P. A., Wang, S., Giles, B., & Gershman, D. ( 2017 ). Interaction of magnetic flux ropes via magnetic reconnection observed at the magnetopause. Journal of Geophysical Research: Space Physics, 122, 10,436 - 10,447. https://doi.org/10.1002/2017JA024482
dc.identifier.citedreferenceWang, R., Lu, Q., Nakamura, R., Huang, C., du, A., Guo, F., Teh, W., Wu, M., Lu, S., & Wang, S. ( 2016 ). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nature Physics, 12 ( 3 ), 263 - 267. https://doi.org/10.1038/nphys3578
dc.identifier.citedreferenceWang, S., Wang, R., Yao, S. T., Lu, Q., Russell, C. T., & Wang, S. ( 2019 ). Anisotropic electron distributions and whistler waves in a series of the flux transfer events at the magnetopause. Journal of Geophysical Research: Space Physics, 124, 1753 - 1769. https://doi.org/10.1029/2018JA026417
dc.identifier.citedreferenceXiao, C. J., Pu, Z. Y., Ma, Z. W., Fu, S. Y., Huang, Z. Y., & Zong, Q. G. ( 2004 ). Inferring of flux rope orientation with the minimum variance analysis technique. Journal of Geophysical Research, 109, A11218. https://doi.org/10.1029/2004JA010594
dc.identifier.citedreferenceYamada, M., Kulsrud, R., & Ji, H. ( 2010 ). Magnetic reconnection. Reviews of Modern Physics, 82, 603 - 664. https://doi.org/10.1103/RevModPhys.82.603
dc.identifier.citedreferenceYamada, M., Ono, Y., Hayakawa, A., Katsurai, M., & Perkins, F. W. ( 1990 ). Magnetic reconnection of plasma toroids with cohelicity and counterhelicity. Physical Review Letters, 65 ( 6 ), 721 - 724. https://doi.org/10.1103/PhysRevLett.65.721
dc.identifier.citedreferenceZhang, H., Kivelson, M. G., Khurana, K. K., McFadden, J., Walker, R. J., Angelopoulos, V., Weygand, J. M., Phan, T., Larson, D., Glassmeier, K. H., & Auster, H. U. ( 2010 ). Evidence that crater flux transfer events are initial stages of typical flux transfer events. Journal of Geophysical Research, 115, A08229. https://doi.org/10.1029/2009JA015013
dc.identifier.citedreferenceZhao, C., Russell, C. T., Strangeway, R. J., Petrinec, S. M., Paterson, W. R., Zhou, M., Anderson, B. J., Baumjohann, W., Bromund, K. R., Chutter, M., Fischer, D., le, G., Nakamura, R., Plaschke, F., Slavin, J. A., Torbert, R. B., & Wei, H. Y. ( 2016 ). Force balance at the magnetopause determined with MMS: Application to flux transfer events. Geophysical Research Letters, 43, 11,941 - 11,947. https://doi.org/10.1002/2016GL071568
dc.identifier.citedreferenceZhao, J., Sakai, J.-I., & Nishikawa, K.-I. ( 1996 ). Excitation of whistler waves driven by an electron temperature anisotropy. Solar Physics, 168 ( 2 ), 345 - 355. https://doi.org/10.1007/BF00148060
dc.identifier.citedreferenceZhou, M., Berchem, J., Walker, R. J., el-Alaoui, M., Deng, X., Cazzola, E., Lapenta, G., Goldstein, M. L., Paterson, W. R., Pang, Y., Ergun, R. E., Lavraud, B., Liang, H., Russell, C. T., Strangeway, R. J., Zhao, C., Giles, B. L., Pollock, C. J., Lindqvist, P. A., Marklund, G., Wilder, F. D., Khotyaintsev, Y. V., Torbert, R. B., & Burch, J. L. ( 2017 ). Coalescence of macroscopic flux ropes at the subsolar magnetopause: Magnetospheric Multiscale observations. Physical Review Letters, 119 ( 5 ). https://doi.org/10.1103/PhysRevLett.119.055101
dc.identifier.citedreferenceZhou, M., Pang, Y., Deng, X., Huang, S., & Lai, X. ( 2014 ). Plasma physics of magnetic island coalescence during magnetic reconnection. Journal of Geophysical Research: Space Physics, 119, 6177 - 6189. https://doi.org/10.1002/2013JA019483
dc.identifier.citedreferenceZou, Y., Walsh, B. M., Nishimura, Y., Angelopoulos, V., Ruohoniemi, J. M., McWilliams, K. A., & Nishitani, N. ( 2018 ). Spreading speed of magnetopause reconnection X-lines using ground-satellite coordination. Geophysical Research Letters, 45, 80 - 89. https://doi.org/10.1002/2017GL075765
dc.identifier.citedreferenceZwan, B. J., & Wolf, R. A. ( 1976 ). Depletion of solar wind plasma near a planetary boundary. Journal of Geophysical Research, 81 ( 10 ), 1636 - 1648. https://doi.org/10.1029/JA081i010p01636
dc.identifier.citedreferenceAkhavan-Tafti, M., Slavin, J. A., le, G., Eastwood, J. P., Strangeway, R. J., Russell, C. T., Nakamura, R., Baumjohann, W., Torbert, R. B., Giles, B. L., Gershman, D. J., & Burch, J. L. ( 2018 ). MMS examination of FTEs at the Earth’s subsolar magnetopause. Journal of Geophysical Research: Space Physics, 123, 1224 - 1241. https://doi.org/10.1002/2017JA024681
dc.identifier.citedreferenceAlm, L., Farrugia, C. J., Paulson, K. W., Argall, M. R., Torbert, R. B., Burch, J. L., Ergun, R. E., Russell, C. T., Strangeway, R. J., Khotyaintsev, Y. V., Lindqvist, P. A., Marklund, G. T., & Giles, B. L. ( 2017 ). Differing properties of two ion-scale magnetopause flux ropes. Journal of Geophysical Research: Space Physics, 123, 114 - 131. https://doi.org/10.1002/2017JA024525
dc.identifier.citedreferenceBaalrud, S. D., Bhattacharjee, A., & Huang, Y.-M. ( 2012 ). Reduced magnetohydrodynamic theory of oblique plasmoid instabilities. Physics of Plasmas, 19 ( 2 ), 022101. https://doi.org/10.1063/1.3678211
dc.identifier.citedreferenceBaumjohann, W., & Treumann, R. A. ( 2012 ). Basic space plasma physics. World Scientific Publishing Company. https://doi.org/10.1142/p850
dc.identifier.citedreferenceBerchem, J., & Russell, C. T. ( 1984 ). Flux transfer events on the magnetopause: Spatial distribution and controlling factors. Journal of Geophysical Research, 89, 6689 - 6703. https://doi.org/10.1029/JA089iA08p06689
dc.identifier.citedreferenceBhattacharjee, A., Huang, Y.-M., Yang, H., & Rogers, B. ( 2009 ). Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Physics of Plasmas, 16 ( 11 ), 112102. https://doi.org/10.1063/1.3264103
dc.identifier.citedreferenceBiskamp, D. ( 1982 ). Effect of secondary tearing instability on the coalescence of magnetic islands. Physics Letters A, 87 ( 7 ), 357 - 360. https://doi.org/10.1016/0375-9601(82)90844-1
dc.identifier.citedreferenceBiskamp, D. ( 1986 ). Magnetic reconnection via current sheets. The Physics of Fluids, 29 ( 5 ), 1520 - 1531. https://doi.org/10.1063/1.865670
dc.identifier.citedreferenceBiskamp, D. ( 1996 ). Magnetic reconnection in plasmas. Astrophysics and Space Science, 242 ( 1-2 ), 165 - 207. https://doi.org/10.1007/BF00645113
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric multiscale overview and science objectives. Space Science Reviews, 199 ( 1-4 ), 5 - 21. https://doi.org/10.1007/s11214-015-0164-9
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ). Magnetic clouds and force-free fields with constant alpha. Journal of Geophysical Research, 93 ( A7 ), 7217. https://doi.org/10.1029/JA093iA07p07217
dc.identifier.citedreferenceCassak, P. A., Shay, M. A., & Drake, J. F. ( 2009 ). Scaling of Sweet-Parker reconnection with secondary islands. Physics of Plasmas, 16 ( 12 ), 120702. https://doi.org/10.1063/1.3274462
dc.identifier.citedreferenceChen, L.-J., Bessho, N., Lefebvre, B., Vaith, H., Fazakerley, A., Bhattacharjee, A., Puhl-Quinn, P. A., Runov, A., Khotyaintsev, Y., Vaivads, A., Georgescu, E., Torbert, R., & others ( 2008 ). Evidence of an extended electron current sheet and its neighboring magnetic island during magnetotail reconnection. Journal of Geophysical Research, 113, A12213. https://doi.org/10.1029/2008JA013385
dc.identifier.citedreferenceChen, Y., Tóth, G., Cassak, P., Jia, X., Gombosi, T. I., Slavin, J. A., Markidis, S., Peng, I. B., Jordanova, V. K., & Henderson, M. G. ( 2017 ). Global three-dimensional simulation of Earth’s dayside reconnection using a two-way coupled magnetohydrodynamics with embedded particle-in-cell model: Initial results. Journal of Geophysical Research: Space Physics, 122, 10,318 - 10,335. https://doi.org/10.1002/2017JA024186
dc.identifier.citedreferenceComisso, L., Grasso, D., & Waelbroeck, F. L. ( 2015 ). Phase diagrams of forced magnetic reconnection in Taylor’s model. Journal of Plasma Physics, 81 ( 5 ). https://doi.org/10.1017/S0022377815000823
dc.identifier.citedreferenceComisso, L., Lingam, M., Huang, Y.-M., & Bhattacharjee, A. ( 2016 ). General theory of the plasmoid instability. Physics of Plasmas, 23 ( 10 ). https://doi.org/10.1063/1.4964481
dc.identifier.citedreferenceComisso, L., & Grasso, D. ( 2016 ). Visco-resistive plasmoid instability. Physics of Plasmas, 23 ( 3 ), 032111. https://doi.org/10.1063/1.4942940
dc.identifier.citedreferenceCuperman, S. ( 1981 ). Electromagnetic kinetic instabilities in multicomponent space plasmas: Theoretical predictions and computer simulation experiments. Reviews of Geophysics, 19 ( 2 ), 307 - 343. https://doi.org/10.1029/RG019i002p00307
dc.identifier.citedreferenceDaughton, W., Roytershteyn, V., Albright, B. J., Karimabadi, H., Yin, L., & Bowers, K. J. ( 2009 ). Transition from collisional to kinetic regimes in large-scale reconnection layers. Physical Review Letters, 103 ( 6 ), 065004. https://doi.org/10.1103/PhysRevLett.103.065004
dc.identifier.citedreferenceDaughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B., & Bowers, K. J. ( 2011a ). Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Physics, 7 ( 7 ), 539 - 542. https://doi.org/10.1038/nphys1965
dc.identifier.citedreferenceDaughton, W, Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Gary, S. P., & Bowers, K. J. ( 2011b ). Secondary island formation in collisional and collisionless kinetic simulations of magnetic reconnection. In AIP Conference Proceedings (vol. 1320, pp. 144-159).
dc.identifier.citedreferenceDaughton, W., Scudder, J., & Karimabadi, H. ( 2006 ). Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Physics of Plasmas, 13 ( 7 ), 072101. https://doi.org/10.1063/1.2218817
dc.identifier.citedreferenceDeng, X. H., Matsumoto, H., Kojima, H., Mukai, T., Anderson, R. R., Baumjohann, W., & Nakamura, R. ( 2004 ). Geotail encounter with reconnection diffusion region in the Earth’s magnetotail: Evidence of multiple X lines collisionless reconnection? Journal of Geophysical Research, 109, A05206. https://doi.org/10.1029/2003JA010031
dc.identifier.citedreferenceDing, D. Q., Lee, L. C., & Swift, D. W. ( 1992 ). Particle simulations of driven collisionless magnetic reconnection at the dayside magnetopause. Journal of Geophysical Research, 97 ( A6 ), 8453 - 8481. https://doi.org/10.1029/92JA00304
dc.identifier.citedreferenceDong, X.-C., Dunlop, M. W., Trattner, K. J., Phan, T. D., Fu, H.-S., Cao, J.-B., Russell, C. T., Giles, B. L., Torbert, R. B., Le, G., & Burch, J. L. ( 2017 ). Structure and evolution of flux transfer events near dayside magnetic reconnection dissipation region: MMS observations. Geophysical Research Letters., 44, 5951 - 5959. https://doi.org/10.1002/2017GL073411
dc.identifier.citedreferenceDorelli, J. C., & Bhattacharjee, A. ( 2009 ). On the generation and topology of flux transfer events. Journal of Geophysical Research, 114, A06213. https://doi.org/10.1029/2008JA013410
dc.identifier.citedreferenceDrake, J. F., & Lee, Y. C. ( 1977a ). Kinetic theory of tearing instabilities. The Physics of Fluids, 20 ( 8 ), 1341 - 1353. https://doi.org/10.1063/1.862017
dc.identifier.citedreferenceDrake, J. F., & Lee, Y. C. ( 1977b ). Nonlinear evolution of collisionless and semicollisional tearing modes. Physical Review Letters, 39 ( 8 ), 453 - 456. https://doi.org/10.1103/PhysRevLett.39.453
dc.identifier.citedreferenceDrake, J. F., Opher, M., Swisdak, M., & Chamoun, J. N. ( 2010 ). A magnetic reconnection mechanism for the generation of anomalous cosmic rays. The Astrophysical Journal, 709 ( 2 ), 963 - 974. https://doi.org/10.1088/0004-637X/709/2/963
dc.identifier.citedreferenceDrake, J. F., Swisdak, M., Che, H., & Shay, M. A. ( 2006 ). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443 ( 7111 ), 553 - 556. https://doi.org/10.1038/nature05116
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Fear, R. C., Sibeck, D. G., Angelopoulos, V., Ieroset, M., & Shay, M. A. ( 2012 ). Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause. Journal of Geophysical Research, 117, A08222. https://doi.org/10.1029/2012JA017722
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Mozer, F. S., Shay, M. A., Fujimoto, M., & Retin??, A., - Dandouras, I. ( 2007 ). Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection. Journal of Geophysical Research, 112, A06235. https://doi.org/10.1029/2006JA012158
dc.identifier.citedreferenceErgun, R. E., Tucker, S., Westfall, J., Goodrich, K. A., Malaspina, D. M., Summers, D., Wallace, J., Karlsson, M., Mack, J., Brennan, N., Pyke, B., Withnell, P., Torbert, R., Macri, J., Rau, D., Dors, I., Needell, J., Lindqvist, P. A., Olsson, G., & Cully, C. M. ( 2016 ). The axial double probe and fields signal processing for the MMS mission. Space Science Reviews, 199 ( 1-4 ), 167 - 188. https://doi.org/10.1007/s11214-014-0115-x
dc.identifier.citedreferenceNi, L., Kliem, B., Lin, J., & Wu, N. ( 2015 ). Fast magnetic reconnection in the solar chromosphere mediated by the plasmoid instability. The Astrophysical Journal, 799 ( 1 ), 79. https://doi.org/10.1088/0004-637X/799/1/79
dc.identifier.citedreferenceFarrugia, C. J., Lavraud, B., Torbert, R. B., Argall, M., Kacem, I., Yu, W., Alm, L., Burch, J., Russell, C. T., Shuster, J., Dorelli, J., Eastwood, J. P., Ergun, R. E., Fuselier, S., Gershman, D., Giles, B. L., Khotyaintsev, Y. V., Lindqvist, P. A., Matsui, H., Marklund, G. T., Phan, T. D., Paulson, K., Pollock, C., & Strangeway, R. J. ( 2016 ). MMS observations and non-force free modeling of a flux transfer event immersed in a super-Alfvénic flow. Geophysical Research Letters, 43, 6070 - 6077. https://doi.org/10.1002/2016GL068758
dc.identifier.citedreferenceFarrugia, C. J., Rijnbeek, R. P., Saunders, M. A., Southwood, D. J., Rodgers, D. J., Smith, M. F., Chaloner, C. P., Hall, D. S., Christiansen, P. J., & Woolliscroft, L. J. C. ( 1988 ). A multi-instrument study of flux transfer event structure. Journal of Geophysical Research, 93 ( A12 ), 14465. https://doi.org/10.1029/JA093iA12p14465
dc.identifier.citedreferenceFermo, R. L., Drake, J. F., Swisdak, M., & Hwang, K. J. ( 2011 ). Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations. Journal of Geophysical Research, 116, A09226. https://doi.org/10.1029/2010JA016271
dc.identifier.citedreferenceFinn, J. M., & Kaw, P. K. ( 1977 ). Coalescence instability of magnetic islands. The Physics of Fluids, 20 ( 1 ), 72 - 78. https://doi.org/10.1063/1.861709
dc.identifier.citedreferenceFurno, I., Intrator, T. P., Hemsing, E. W., Hsu, S. C., Abbate, S., Ricci, P., & Lapenta, G. ( 2005 ). Coalescence of two magnetic flux ropes via collisional magnetic reconnection. Physics of Plasmas, 12 ( 5 ), 055702. https://doi.org/10.1063/1.1894418
dc.identifier.citedreferenceGaleev, A. A., Coroniti, F. V., & Ashour-Abdalla, M. ( 1978 ). Explosive tearing mode reconnection in the magnetospheric tail. Geophysical Research Letters, 5 ( 8 ), 707 - 710. https://doi.org/10.1029/GL005i008p00707
dc.identifier.citedreferenceGary, S. P., & Madland, C. D. ( 1985 ). Electromagnetic electron temperature anisotropy instabilities. Journal of Geophysical Research, 90 ( A8 ), 7607 - 7610. https://doi.org/10.1029/JA090iA08p07607
dc.identifier.citedreferenceGary, S. P., Montgomery, M. D., Feldman, W. C., & Forslund, D. W. ( 1976 ). Proton temperature anisotropy instabilities in the solar wind. Journal of Geophysical Research, 81 ( 7 ), 1241 - 1246. https://doi.org/10.1029/JA081i007p01241
dc.identifier.citedreferenceGonzalez, W., & Parker, E. ( 2016 ). Magnetic reconnection: Concepts and applications, (Vol. 427 ). Springer.
dc.identifier.citedreferenceHarvey, C. C. ( 1998 ). Spatial gradients and the volumetric tensor. Retrieved from http://www.issibern.ch/forads/sr-001-12.pdf
dc.identifier.citedreferenceHasegawa, H., Wang, J., Dunlop, M. W., Pu, Z. Y., Zhang, Q. H., Lavraud, B., Taylor, M. G. G. T., Constantinescu, O. D., Berchem, J., Angelopoulos, V., McFadden, J. P., Frey, H. U., Panov, E. V., Volwerk, M., & Bogdanova, Y. V. ( 2010 ). Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause. Geophysical Research Letters, 37, L16101. https://doi.org/10.1029/2010GL044219
dc.identifier.citedreferenceHesse, M., Schindler, K., Birn, J., & Kuznetsova, M. ( 1999 ). The diffusion region in collisionless magnetic reconnection. Physics of Plasmas, 6 ( 5 ), 1781 - 1795. https://doi.org/10.1063/1.873436
dc.identifier.citedreferenceHoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh, B. M., Hietala, H., Alfthan, S., & Palmroth, M. ( 2017 ). Reconnection rates and X line motion at the magnetopause: Global 2D-3V hybrid-Vlasov simulation results. Journal of Geophysical Research: Space Physics, 122, 2877 - 2888. https://doi.org/10.1002/2016JA023709
dc.identifier.citedreferenceHoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L., Battarbee, M., Fear, R. C., Blanco-Cano, X., Dimmock, A. P., Kilpua, E. K. J., Jarvinen, R., Juusola, L., Pfau-Kempf, Y., & Palmroth, M. ( 2019 ). Properties of magnetic reconnection and FTEs on the dayside magnetopause with and without positive IMF B component during southward IMF. Journal of Geophysical Research: Space Physics. https://doi.org/10.1029/2019JA026821
dc.identifier.citedreferenceHollweg, J. V., & Völk, H. J. ( 1970a ). Two new plasma instabilities in the solar wind. Nature, 225 ( 5231 ), 441 - 443. https://doi.org/10.1038/225441a0
dc.identifier.citedreferenceHollweg, J. V., & Völk, H. J. ( 1970b ). New plasma instabilities in the solar wind. Journal of Geophysical Research, 75 ( 28 ), 5297 - 5309.
dc.identifier.citedreferenceHuang, S. Y., Sahraoui, F., Retino, A., le Contel, O., Yuan, Z. G., Chasapis, A., Aunai, N., Breuillard, H., Deng, X. H., Zhou, M., Fu, H. S., Pang, Y., Wang, D. D., Torbert, R. B., Goodrich, K. A., Ergun, R. E., Khotyaintsev, Y. V., Lindqvist, P. A., Russell, C. T., Strangeway, R. J., Magnes, W., Bromund, K., Leinweber, H., Plaschke, F., Anderson, B. J., Pollock, C. J., Giles, B. L., Moore, T. E., & Burch, J. L. ( 2016 ). MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma. Geophysical Research Letters, 43, 7850 - 7858. https://doi.org/10.1002/2016GL070033
dc.identifier.citedreferenceHuang, Y.-M., & Bhattacharjee, A. ( 2010 ). Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Physics of Plasmas, 17 ( 6 ), 062104. https://doi.org/10.1063/1.3420208
dc.identifier.citedreferenceHuang, Y.-M., & Bhattacharjee, A. ( 2013 ). Plasmoid instability in high-Lundquist-number magnetic reconnection a. Physics of Plasmas, 20 ( 5 ), 055702. https://doi.org/10.1063/1.4802941
dc.identifier.citedreferenceHuang, Y.-M., Bhattacharjee, A., & Sullivan, B. P. ( 2011 ). Onset of fast reconnection in Hall magnetohydrodynamics mediated by the plasmoid instability. Physics of Plasmas, 18 ( 7 ), 072109. https://doi.org/10.1063/1.3606363
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1978 ). Initial ISEE magnetometer results: Magnetopause observations. Space Science Reviews, 22 ( 6 ), 681 - 715.
dc.identifier.citedreferenceHwang, K.-J., Sibeck, D. G., Burch, J. L., Choi, E., Fear, R. C., Lavraud, B., Giles, B. L., Gershman, D., Pollock, C. J., Eastwood, J. P., Khotyaintsev, Y., Escoubet, P., Fu, H., Toledo-Redondo, S., Torbert, R. B., Ergun, R. E., Paterson, W. R., Dorelli, J. C., Avanov, L., Russell, C. T., & Strangeway, R. J. ( 2018 ). Small-scale flux transfer events formed in the reconnection exhaust region between two X-lines. Journal of Geophysical Research: Space Physics, 123, 8473 - 8488. https://doi.org/10.1029/2018JA025611
dc.identifier.citedreferenceHwang, K.-J., Sibeck, D. G., Giles, B. L., Pollock, C. J., Gershman, D., Avanov, L., Paterson, W. R., Dorelli, J. C., Ergun, R. E., Russell, C. T., Strangeway, R. J., Mauk, B., Cohen, I. J., Torbert, R. B., & Burch, J. L. ( 2016 ). The substructure of a flux transfer event observed by the MMS spacecraft. Geophysical Research Letters, 43, 9434 - 9443. https://doi.org/10.1002/2016GL070934
dc.identifier.citedreferenceKarimabadi, H., Dorelli, J., Roytershteyn, V., Daughton, W., & Chacón, L. ( 2011 ). Flux pileup in collisionless Magnetic reconnection: Bursty interaction of large flux ropes. Physical Review Letters, 107 ( 2 ), 025002. https://doi.org/10.1103/PhysRevLett.107.025002
dc.identifier.citedreferenceKennel, C. F., & Petschek, H. E. ( 1966 ). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71 ( 1 ), 1 - 28. https://doi.org/10.1029/JZ071i001p00001
dc.identifier.citedreferenceKish, L. ( 1992 ). Weighting for unequal Pi. Journal of Official Statistics, 8 ( 2 ), 183.
dc.identifier.citedreferenceKumar, A., & Rust, D. M. ( 1996 ). Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. Journal of Geophysical Research, 101 ( A7 ), 15,667 - 15,684. https://doi.org/10.1029/96JA00544
dc.identifier.citedreferenceLapenta, G., Pucci, F., Olshevsky, V., Servidio, S., Sorriso-Valvo, L., Newman, D. L., & Goldman, M. V. ( 2018 ). Nonlinear waves and instabilities leading to secondary reconnection in reconnection outflows. Journal of Plasma Physics, 84 ( 1 ). https://doi.org/10.1017/S002237781800003X
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1985 ). A theory of magnetic flux transfer at the Earth’s magnetopause. Geophysical Research Letters, 12 ( 2 ), 105 - 108. https://doi.org/10.1029/GL012i002p00105
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1986 ). Multiple X line reconnection: 1. A criterion for the transition from a single X line to a multiple X line reconnection. Journal of Geophysical Research, 91 ( A6 ), 6807 - 6815. https://doi.org/10.1029/JA091iA06p06807
dc.identifier.citedreferenceLee, L. C., Price, C. P., Wu, C. S., & Mandt, M. E. ( 1988 ). A study of mirror waves generated downstream of a quasi-perpendicular shock. Journal of Geophysical Research, 93 ( A1 ), 247 - 250. https://doi.org/10.1029/JA093iA01p00247
dc.identifier.citedreferenceLepping, R. P., Jones, J. A., & Burlaga, L. F. ( 1990 ). Magnetic field structure of interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research, 95 ( A8 ), 11957. https://doi.org/10.1029/JA095iA08p11957
dc.identifier.citedreferenceLindqvist, P.-A., Olsson, G., Torbert, R. B., King, B., Granoff, M., Rau, D., Needell, G., Turco, S., Dors, I., Beckman, P., Macri, J., Frost, C., Salwen, J., Eriksson, A., à hlén, L., Khotyaintsev, Y. V., Porter, J., Lappalainen, K., Ergun, R. E., Wermeer, W., & Tucker, S. ( 2016 ). The spin-plane double probe electric field instrument for MMS. Space Science Reviews, 199 ( 1-4 ), 137 - 165. https://doi.org/10.1007/s11214-014-0116-9
dc.identifier.citedreferenceLingam, M., & Comisso, L. ( 2018 ). A maximum entropy principle for inferring the distribution of 3D plasmoids. Physics of Plasmas, 25 ( 1 ), 012114. https://doi.org/10.1063/1.5020887
dc.identifier.citedreferenceLoureiro, N. F., Samtaney, R., Schekochihin, A. A., & Uzdensky, D. A. ( 2012 ). Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas. Physics of Plasmas, 19 ( 4 ), 042303. https://doi.org/10.1063/1.3703318
dc.identifier.citedreferenceLoureiro, N. F., Schekochihin, A. A., & Cowley, S. C. ( 2007 ). Instability of current sheets and formation of plasmoid chains. Physics of Plasmas, 14 ( 10 ), 100703. https://doi.org/10.1063/1.2783986
dc.identifier.citedreferenceLoureiro, N. F., Schekochihin, A. A., & Uzdensky, D. A. ( 2013 ). Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets. Physical Review E, 87 ( 1 ), 13102. https://doi.org/10.1103/PhysRevE.87.013102
dc.identifier.citedreferenceMa, Z. W. T., Otto, A., & Lee, L. C. ( 1994 ). Core magnetic field enhancement in single X line, multiple X line and patchy reconnection. Journal of Geophysical Research, 99 ( A4 ), 6125 - 6136. https://doi.org/10.1029/93JA03480
dc.identifier.citedreferenceMidgley, J. E., & Davis, L. ( 1963 ). Calculation by a moment technique of the perturbation of the geomagnetic field by the solar wind. Journal of Geophysical Research, 68 ( 18 ), 5111 - 5123. https://doi.org/10.1029/JZ068i018p05111
dc.identifier.citedreferenceMilan, S. E., Lester, M., Cowley, S. W. H., & Brittnacher, M. ( 2000 ). Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. Journal of Geophysical Research, 105 ( A7 ), 15,741 - 15,755. https://doi.org/10.1029/2000JA900022
dc.identifier.citedreferenceMurphy, N. A., Young, A. K., Shen, C., Lin, J., & Ni, L. ( 2013 ). The plasmoid instability during asymmetric inflow magnetic reconnection. Physics of Plasmas, 20 ( 6 ), 061211. https://doi.org/10.1063/1.4811470
dc.identifier.citedreferenceNakamura, T. K. M., Nakamura, R., Narita, Y., Baumjohann, W., & Daughton, W. ( 2016 ). Multi-scale structures of turbulent magnetic reconnection. Physics of Plasmas, 23 ( 5 ), 052116. https://doi.org/10.1063/1.4951025
dc.identifier.citedreferenceà ieroset, M., Phan, T. D., Haggerty, C., Shay, M. A., Eastwood, J. P., Gershman, D. J., Drake, J. F., Fujimoto, M., Ergun, R. E., Mozer, F. S., Oka, M., Torbert, R. B., Burch, J. L., Wang, S., Chen, L. J., Swisdak, M., Pollock, C., Dorelli, J. C., Fuselier, S. A., Lavraud, B., Giles, B. L., Moore, T. E., Saito, Y., Avanov, L. A., Paterson, W., Strangeway, R. J., Russell, C. T., Khotyaintsev, Y., Lindqvist, P. A., & Malakit, K. ( 2016 ). MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause. Geophysical Research Letters, 43, 5536 - 5544. https://doi.org/10.1002/2016GL069166
dc.identifier.citedreferenceOmidi, N., Blanco-Cano, X., Russell, C. T., & Karimabadi, H. ( 2006 ). Global hybrid simulations of solar wind interaction with Mercury: Magnetosperic boundaries. Advances in Space Research, 38 ( 4 ), 632 - 638. https://doi.org/10.1016/j.asr.2005.11.019
dc.identifier.citedreferenceOmidi, N., & Sibeck, D. G. ( 2007 ). Flux transfer events in the cusp. Geophysical Research Letters, 34, L04106. https://doi.org/10.1029/2006GL028698
dc.identifier.citedreferencePhan, T. D., Paschmann, G., Twitty, C., Mozer, F. S., Gosling, J. T., Eastwood, J. P., à ieroset, M., Rème, H., & Lucek, E. A. ( 2007 ). Evidence for magnetic reconnection initiated in the magnetosheath. Geophysical Research Letters, 34, L14104. https://doi.org/10.1029/2007GL030343
dc.identifier.citedreferencePilipp, W., & Völk, H. J. ( 1971 ). Analysis of electromagnetic instabilities parallel to the magnetic field. Journal of Plasma Physics, 6 ( 1 ), 1 - 17. https://doi.org/10.1017/S0022377800025654
dc.identifier.citedreferencePollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., Coffey, V., Dorelli, J., Gershman, D., Giles, B., Rosnack, T., Salo, C., Yokota, S., Adrian, M., Aoustin, C., Auletti, C., Aung, S., Bigio, V., Cao, N., Chandler, M., Chornay, D., Christian, K., Clark, G., Collinson, G., Corris, T., de Los Santos, A., Devlin, R., Diaz, T., Dickerson, T., Dickson, C., Diekmann, A., Diggs, F., Duncan, C., Figueroa-Vinas, A., Firman, C., Freeman, M., Galassi, N., Garcia, K., Goodhart, G., Guererro, D., Hageman, J., Hanley, J., Hemminger, E., Holland, M., Hutchins, M., James, T., Jones, W., Kreisler, S., Kujawski, J., Lavu, V., Lobell, J., LeCompte, E., Lukemire, A., MacDonald, E., Mariano, A., Mukai, T., Narayanan, K., Nguyan, Q., Onizuka, M., Paterson, W., Persyn, S., Piepgrass, B., Cheney, F., Rager, A., Raghuram, T., Ramil, A., Reichenthal, L., Rodriguez, H., Rouzaud, J., Rucker, A., Saito, Y., Samara, M., Sauvaud, J. A., Schuster, D., Shappirio, M., Shelton, K., Sher, D., Smith, D., Smith, K., Smith, S., Steinfeld, D., Szymkiewicz, R., Tanimoto, K., Taylor, J., Tucker, C., Tull, K., Uhl, A., Vloet, J., Walpole, P., Weidner, S., White, D., Winkert, G., Yeh, P. S., & Zeuch, M. ( 2016 ). Fast Plasma Investigation for Magnetospheric Multiscale. Space Science Reviews, 199 ( 1-4 ), 331 - 406. https://doi.org/10.1007/s11214-016-0245-4
dc.identifier.citedreferencePritchett, P. L. ( 1992 ). The coalescence instability in collisionless plasmas. Physics of Fluids B: Plasma Physics, 4 ( 10 ), 3371 - 3381. https://doi.org/10.1063/1.860392
dc.identifier.citedreferencePritchett, P. L. ( 2001 ). Collisionless magnetic reconnection in a three-dimensional open system. Journal of Geophysical Research, 106 ( A11 ), 25,961 - 25,977. https://doi.org/10.1029/2001JA000016
dc.identifier.citedreferencePritchett, P. L. ( 2005 ). Onset and saturation of guide-field magnetic reconnection. Physics of Plasmas, 12 ( 6 ), 062301. https://doi.org/10.1063/1.1914309
dc.identifier.citedreferencePritchett, P. L., & Coroniti, F. V. ( 2004 ). Three-dimensional collisionless magnetic reconnection in the presence of a guide field. Journal of Geophysical Research, 109, A01220. https://doi.org/10.1029/2003JA009999
dc.identifier.citedreferencePritchett, P. L., & Wu, C. C. ( 1979 ). Coalescence of magnetic islands. The Physics of Fluids, 22 ( 11 ), 2140 - 2146. https://doi.org/10.1063/1.862507
dc.identifier.citedreferenceRaeder, J. ( 2006 ). Flux transfer events: 1. Generation mechanism for strong southward IMF. Annales Geophysicae, 24, 381 - 392.
dc.identifier.citedreferenceRemya, B., Reddy, R. V., Tsurutani, B. T., Lakhina, G. S., & Echer, E. ( 2013 ). Ion temperature anisotropy instabilities in planetary magnetosheaths. Journal of Geophysical Research: Space Physics, 118, 785 - 793. https://doi.org/10.1002/jgra.50091
dc.identifier.citedreferenceRicci, P., Brackbill, J. U., Daughton, W., & Lapenta, G. ( 2004 ). Collisionless magnetic reconnection in the presence of a guide field. Physics of Plasmas, 11 ( 8 ), 4102 - 4114. https://doi.org/10.1063/1.1768552
dc.identifier.citedreferenceRijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., & Russell, C. T. ( 1984 ). A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. Journal of Geophysical Research, 89 ( A2 ), 786 - 800. https://doi.org/10.1029/JA089iA02p00786
dc.identifier.citedreferenceRijnbeek, R. P., Farrugia, C. J., Southwood, D. J., Dunlop, M. W., Mier-Jedrzejowicz, W. A. C., Chaloner, C. P., Hall, D. S., & Smith, M. F. ( 1987 ). A magnetic boundary signature within flux transfer events. Planetary and Space Science, 35 ( 7 ), 871 - 878. https://doi.org/10.1016/0032-0633(87)90065-1
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., le, G., Leinweber, H. K., Leneman, D., Magnes, W., Means, J. D., Moldwin, M. B., Nakamura, R., Pierce, D., Plaschke, F., Rowe, K. M., Slavin, J. A., Strangeway, R. J., Torbert, R., Hagen, C., Jernej, I., Valavanoglou, A., & Richter, I. ( 2016 ). The Magnetospheric Multiscale magnetometers. Space Science Reviews, 199 ( 1-4 ), 189 - 256. https://doi.org/10.1007/s11214-014-0057-3
dc.identifier.citedreferenceScholer, M. ( 1988 ). Magnetic flux transfer at the magnetopause based on single X line bursty reconnection. Geophysical Research Letters, 15 ( 4 ), 291 - 294. https://doi.org/10.1029/GL015i004p00291
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.