Show simple item record

Nonparametric group sequential methods for evaluating survival benefit from multiple short‐term follow‐up windows

dc.contributor.authorXia, Meng
dc.contributor.authorMurray, Susan
dc.contributor.authorTayob, Nabihah
dc.date.accessioned2019-09-30T15:32:41Z
dc.date.availableWITHHELD_10_MONTHS
dc.date.available2019-09-30T15:32:41Z
dc.date.issued2019-06
dc.identifier.citationXia, Meng; Murray, Susan; Tayob, Nabihah (2019). "Nonparametric group sequential methods for evaluating survival benefit from multiple short‐term follow‐up windows." Biometrics 75(2): 494-505.
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/2027.42/151365
dc.description.abstractThis article takes a fresh look at group sequential methods applied to two‐sample tests of censored survival data and proposes an alternative method of defining and evaluating treatment benefit. Our method re‐purposes traditional censored event time data into a sequence of short‐term outcomes taken from (potentially overlapping) follow‐up windows. A new two‐sample restricted means test based on this restructured follow‐up data is proposed along with group sequential methods for its use in the clinical trial setting. This method compares favorably with existing methods for group sequential monitoring of time‐to‐event outcomes, including methods for monitoring the restricted means test and the logrank test. Our method performs particularly well in cases where there is a delayed treatment effect and/or a subset of cured patients. As part of developing group sequential methods for these analyses, we consider asymmetric error spending approaches that differentially limit the chances of stopping incorrectly for perceived efficacy versus perceived harm attributed to the investigational arm of the trial. Recommendations for how to choose proper group sequential stopping boundaries are given, with supporting simulations and an example from the AIDS Clinical Trial Group.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersurvival analysis
dc.subject.othernonparametric test
dc.subject.othergroup sequential methods
dc.subject.otherasymmetric error spending
dc.titleNonparametric group sequential methods for evaluating survival benefit from multiple short‐term follow‐up windows
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151365/1/biom13007_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151365/2/biom13007-sup-0001-SuppData.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151365/3/biom13007.pdf
dc.identifier.doi10.1111/biom.13007
dc.identifier.sourceBiometrics
dc.identifier.citedreferencePocock, S. ( 1977 ). Group sequential methods in the design and analysis of clinical trials. Biometrika 64, 191 – 199.
dc.identifier.citedreferenceFriedman, L. M., Furberg, C. D., De Mets, D. L., Reboussin, D. M., and Granger, C. B. ( 2015 ). Foundamentals of Clinical Trials. Springer.
dc.identifier.citedreferenceGehan, E. A. ( 1965 ). A generalized Wilcoxon test for comparing arbitrarily singly‐censored samples. Biometrika, 52452, 203 – 223.
dc.identifier.citedreferenceHarrington, D. P. ( 2012 ). Design for Clinical Trials. Springer.
dc.identifier.citedreferenceHarrington, D. P. and Fleming, T. R. ( 1982 ). A class of rank test procedures for censored survival data. Biometrika 69, 553 – 566.
dc.identifier.citedreferenceJennison, C. and Turnbull, B. W. ( 2000 ). Group Sequential Methods with Applications to Clinical Trials. Chapman and Hall.
dc.identifier.citedreferenceLan, K. K. G. and De Mets, D. L. ( 1983 ). Discrete sequential boundaries for clinical trials. Biometrika 70, 659 – 663.
dc.identifier.citedreferenceLi, Z. ( 1999 ). A group sequential test for survival trials: An alternative to rank‐based procedures. Biometrics 55, 277 – 283.
dc.identifier.citedreferenceMantel, N. ( 1963 ). Chi‐square tests with one degree of freedom; extensions of the Mantel–Haenszel procedure. J Am Stat Assoc 58, 690 – 700.
dc.identifier.citedreferenceMantel, N. ( 1966 ). Evaluation of survival data and two new rank‐order statistics arising in its consideration. Cancer Chemother Rep 50, 163 – 170.
dc.identifier.citedreferenceMurray, S. and Tsiatis, A. A. ( 1999 ). Sequential methods for comparing years of life saved in the two‐sample censored data problem. Biometrics 55, 1085 – 1092.
dc.identifier.citedreferenceO’Brien, P. and Fleming, T. ( 1979 ). A multiple testing procedure for clinical trials. Biometrics 35, 549 – 556.
dc.identifier.citedreferencePampallona, S. and Tsiatis, A. A. ( 1994 ). Group sequential designs for one‐sided and two‐sided hypothesis testing with provision for early stopping in favor of the null hypothesis. J Stat Plan Inference 42, 19 – 35.
dc.identifier.citedreferencePepe, M. S. and Fleming, T. R. ( 1989 ). Weighted Kaplan‐Meier statistics: A class of distance tests for censored survival data. Biometrics 45, 497 – 507.
dc.identifier.citedreferencePeto, R. and Peto, J. ( 1972 ). Asymptotically efficient rank invariant test procedures. J R Stat Soc Ser A 135, 185 – 207.
dc.identifier.citedreferencePrentice, R. L. ( 1978 ). Linear rank tests with right censored data. Biometrika 65, 167 – 179.
dc.identifier.citedreferenceProschan, M. A., Lan, K. K. G., and Wittes, J. T. ( 2006 ). Statistical Monitoring of Chinical Trials: A Unified Approach. Springer.
dc.identifier.citedreferenceTayob, N. and Murray, S. ( 2016 ). Nonparametric restricted mean analysis across multiple follow‐up intervals. Stat Probabil Lett 109, 152 – 158.
dc.identifier.citedreferenceTayob, N. and Murray, S. ( 2017 ). Statistical consequences of a successful lung allocation system –Recovering information and reducing bias in models for urgency. Stat Med 36, 2435 – 2451.
dc.identifier.citedreferenceTsiatis, A. A. ( 1981 ). The asymptotic joint distribution of the efficient scores test for the proportional hazards model calculated over time. Biometrika 68, 311 – 315.
dc.identifier.citedreferenceTsiatis, A. A. ( 1982 ). Repeated significance testing for a general class of statistics used in censored survival analysis. J Am Stat Assoc 77, 855 – 861.
dc.identifier.citedreferenceWare, J. H., Muller, J., and Braunwald, E. ( 1985 ). The futility index. An approach to the cost‐effective termination of randomized clinical trials. Am J Med 78, 635 – 643.
dc.identifier.citedreferenceBreslow, N. ( 1970 ). A generalized Kruskal‐Wallis test for comparing k samples subject to unequal patterns of censorship. Biometrika 57, 579 – 594.
dc.identifier.citedreferenceDeMets, D. L. and Lan, K. K. G. ( 1994 ). Interim analysis: The alpha spending function approach. Stat Med 13, 1341 – 1352.
dc.identifier.citedreferenceDeMets, D. L. and Ware, J. H. ( 1982 ). Asymmetric group sequential boundaries for monitoring clinical trials. Biometrika 69, 661 – 663.
dc.identifier.citedreferenceFischl, M., Parker, L., Petinelli, C., et al. ( 1990 ). A randomized controlled trial of a reduced daily dose of zidovudine in patients with the aquired immunodeficiency syndrome. N Engl J Med 323, 1009 – 1014.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.