Show simple item record

Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum

dc.contributor.authorMinogianis, Ellie‐anna
dc.contributor.authorShams, Waqqas M.
dc.contributor.authorMabrouk, Omar S.
dc.contributor.authorWong, Jenny‐marie T.
dc.contributor.authorBrake, Wayne G.
dc.contributor.authorKennedy, Robert T.
dc.contributor.authorSouich, Patrick
dc.contributor.authorSamaha, Anne‐noël
dc.date.accessioned2019-10-30T15:29:14Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:29:14Z
dc.date.issued2019-08
dc.identifier.citationMinogianis, Ellie‐anna ; Shams, Waqqas M.; Mabrouk, Omar S.; Wong, Jenny‐marie T. ; Brake, Wayne G.; Kennedy, Robert T.; Souich, Patrick; Samaha, Anne‐noël (2019). "Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum." European Journal of Neuroscience 50(3): 2054-2064.
dc.identifier.issn0953-816X
dc.identifier.issn1460-9568
dc.identifier.urihttps://hdl.handle.net/2027.42/151808
dc.description.abstractThe faster drugs of abuse reach the brain, the greater is the risk of addiction. Even small differences in the rate of drug delivery can influence outcome. Infusing cocaine intravenously over 5 vs. 90â 100 s promotes sensitization to the psychomotor and incentive motivational effects of the drug and preferentially recruits mesocorticolimbic regions. It remains unclear whether these effects are due to differences in how fast and/or how much drug reaches the brain. Here, we predicted that varying the rate of intravenous cocaine infusion between 5 and 90 s produces different rates of rise of brain drug concentrations, while producing similar peak concentrations. Freely moving male Wistar rats received acute intravenous cocaine infusions (2.0 mg/kg/infusion) over 5, 45 and 90 s. We measured cocaine concentrations in the dorsal striatum using rapidâ sampling microdialysis (1 sample/min) and highâ performance liquid chromatographyâ tandem mass spectrometry. We also measured extracellular concentrations of dopamine and other neurochemicals. Regardless of infusion rate, acute cocaine did not change concentrations of nonâ dopaminergic neurochemicals. Infusion rate did not significantly influence peak concentrations of cocaine or dopamine, but concentrations increased faster following 5â s infusions. We also assessed psychomotor activity as a function of cocaine infusion rate. Infusion rate did not significantly influence total locomotion, but locomotion increased earlier following 5â s infusions. Thus, small differences in the rate of cocaine delivery influence both the rate of rise of drug and dopamine concentrations, and psychomotor activity. A faster rate of rise of drug and dopamine concentrations might be an important issue in making rapidly delivered cocaine more addictive.Varying the rate of i.v. cocaine delivery between 5 and 90 s determines the drug’s effects on brain and behaviour. We show that injecting cocaine between 5 and 90 s in rats alters the rates of rise of cocaine and dopamine in the dorsal striatum, without significantly changing peak concentrations. Faster injections also increase locomotor behaviour earlier than slower injections. Thus, beyond achieved dose, differences in the rates of rise of cocaine and dopamine can determine outcome.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othercocaine addiction
dc.subject.otherlocomotor activity
dc.subject.othermale Wistar rats
dc.subject.otherpharmacokinetics
dc.subject.otherin vivo microdialysis
dc.titleVarying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151808/1/ejn13941-sup-0002-reviewer-Comments.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151808/2/ejn13941.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151808/3/ejn13941-sup-0001-FigS1-S3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151808/4/ejn13941_am.pdf
dc.identifier.doi10.1111/ejn.13941
dc.identifier.sourceEuropean Journal of Neuroscience
dc.identifier.citedreferenceRobinson, T.E., Becker, J.B. & Presty, S.K. ( 1982 ) Longâ term facilitation of amphetamineâ induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res., 253, 231 â 241.
dc.identifier.citedreferenceMiller, G.M., Yatin, S.M., De La Garza Ii, R., Goulet, M. & Madras, B.K. ( 2001 ) Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. Mol. Brain Res., 87, 124 â 143.
dc.identifier.citedreferenceMinogianis, E.â A., Lévesque, D. & Samaha, A.â N. ( 2013 ) The speed of cocaine delivery determines the subsequent motivation to selfâ administer the drug. Neuropsychopharmacology, 38, 2644 â 2656.
dc.identifier.citedreferenceNayak, P., Misra, A. & Mule, S. ( 1976 ) Physiological disposition and biotransformation of (3H) cocaine in acutely and chronically treated rats. J. Pharmacol. Exp. Ther., 196, 556 â 569.
dc.identifier.citedreferenceNicolaysen, L.C., Pan, H.â T. & Justice Jr, J.B. ( 1988 ) Extracellular cocaine and dopamine concentrations are linearly related in rat striatum. Brain Res., 456, 317 â 323.
dc.identifier.citedreferencePan, H.T., Menacherry, S. & Justice, J. ( 1991 ) Differences in the pharmacokinetics of cocaine in naive and cocaineâ experienced rats. J. Neurochem., 56, 1299 â 1306.
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 1986 ). The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego, CA, p. 119.
dc.identifier.citedreferencePorrino, L.J. ( 1993 ) Functional consequences of acute cocaine treatment depend on route of administration. Psychopharmacology, 112, 343 â 351.
dc.identifier.citedreferenceReed, D. & Spiehler, V.R. ( 1985 ) Brain concentrations of cocaine and benzoylecgonine in fatal cases. J. Forensic Sci., 30, 1003 â 1011.
dc.identifier.citedreferenceReith, M., Li, M.Y. & Yan, Q.S. ( 1997 ) Extracellular dopamine, norepinephrine, and serotonin in the ventral tegmental area and nucleus accumbens of freely moving rats during intracerebral dialysis following systemic administration of cocaine and other uptake blockers. Psychopharmacology, 134, 309 â 317.
dc.identifier.citedreferenceResnick, R., Kestenbaum, R. & Schwartz, L. ( 1977 ) Acute systemic effects of cocaine in man: a controlled study by intranasal and intravenous routes. Science, 195, 696 â 698.
dc.identifier.citedreferenceRothman, R.B., Baumann, M.H., Dersch, C.M., Romero, D.V., Rice, K.C., Carroll, F.I. & Partilla, J.S. ( 2001 ) Amphetamineâ type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse, 39, 32 â 41.
dc.identifier.citedreferenceSamaha, A.â N. & Robinson, T.E. ( 2005 ) Why does the rapid delivery of drugs to the brain promote addiction? Trends Pharmacol. Sci., 26, 82 â 87.
dc.identifier.citedreferenceSamaha, A.â N., Li, Y. & Robinson, T.E. ( 2002 ) The rate of intravenous cocaine administration determines susceptibility to sensitization. J. Neurosci., 22, 3244 â 3250.
dc.identifier.citedreferenceSamaha, A.â N., Mallet, N., Ferguson, S.M., Gonon, F. & Robinson, T.E. ( 2004 ) The rate of cocaine administration alters gene regulation and behavioral plasticity: implications for addiction. J. Neurosci., 24, 6362 â 6370.
dc.identifier.citedreferenceShideman, F., Winters, W.D., Peterson, R.C., Wilner, W.K. & Gould, T.C. ( 1953 ) The distribution and in vivo rate of metabolism of thiopental. J. Pharmacol. Exp. Ther., 107, 368 â 378.
dc.identifier.citedreferenceShou, M., Ferrario, C.R., Schultz, K.N., Robinson, T.E. & Kennedy, R.T. ( 2006 ) Monitoring dopamine in vivo by microdialysis sampling and onâ line CEâ laserâ induced fluorescence. Anal. Chem., 78, 6717 â 6725.
dc.identifier.citedreferenceSong, P., Mabrouk, O.S., Hershey, N.D. & Kennedy, R.T. ( 2012 ) In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography â mass spectrometry. Anal. Chem., 84, 412 â 419.
dc.identifier.citedreferenceStrakowski, S.M. & Sax, K.W. ( 1998 ) Progressive behavioral response to repeated dâ amphetamine challenge: further evidence for sensitization in humans. Biol. Psychiat., 44, 1171 â 1177.
dc.identifier.citedreferenceVenton, B.J., Seipel, A.T., Phillips, P.E., Wetsel, W.C., Gitler, D., Greengard, P., Augustine, G.J. & Wightman, R.M. ( 2006 ) Cocaine increases dopamine release by mobilization of a synapsinâ dependent reserve pool. J. Neurosci., 26, 3206 â 3209.
dc.identifier.citedreferenceVolkow, N.D., Wang, G.J., Fischman, M.W., Foltin, R., Fowler, J.S., Franceschi, D., Franceschi, M., Logan, J. et al. ( 2000 ) Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci., 67, 1507 â 1515.
dc.identifier.citedreferenceWakabayashi, K.T., Weiss, M.J., Pickup, K.N. & Robinson, T.E. ( 2010 ) Rats markedly escalate their intake and show a persistent susceptibility to reinstatement only when cocaine is injected rapidly. J. Neurosci., 30, 11346 â 11355.
dc.identifier.citedreferenceWeiss, R. D., Mirin, S. M. & Bartel, R. L. ( 1993 ) Cocaine. American Psychiatric Assoc Pub., Arlington, VA, USA.
dc.identifier.citedreferenceWieland, S., Schindler, S., Huber, C., Kohr, G., Oswald, M.J. & Kelsch, W. ( 2015 ) Phasic dopamine modifies sensoryâ driven output of striatal neurons through synaptic plasticity. J. Neurosci., 35, 9946 â 9956.
dc.identifier.citedreferenceWong, J.â M.T., Malec, P.A., Mabrouk, O.S., Ro, J., Dus, M. & Kennedy, R.T. ( 2016 ) Benzoyl chloride derivatization with liquid chromatographyâ mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J. Chromatogr. A, 1446, 78 â 90.
dc.identifier.citedreferenceWoolverton, W.L. & Wang, Z. ( 2004 ) Relationship between injection duration, transporter occupancy and reinforcing strength of cocaine. Eur. J. Pharmacol., 486, 251 â 257.
dc.identifier.citedreferenceZernig, G., Giacomuzzi, S., Riemer, Y., Wakonigg, G., Sturm, K. & Saria, A. ( 2003 ) Intravenous drug injection habits: drug usersâ selfâ reports versus researchersâ perception. Pharmacology, 68, 49 â 56.
dc.identifier.citedreferenceZhang, Y., Loonam, T.M., Noailles, P.A. & Angulo, J.A. ( 2001 ) Comparison of cocaineâ and methamphetamineâ evoked dopamine and glutamate overflow in somatodendritic and terminal field regions of the rat brain during acute, chronic, and early withdrawal conditions. Ann. N. Y. Acad. Sci., 937, 93 â 120
dc.identifier.citedreferenceAbreu, M.E., Bigelow, G.E., Fleisher, L. & Walsh, S.L. ( 2001 ) Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans. Psychopharmacology, 154, 76 â 84.
dc.identifier.citedreferenceAllain, F., Minogianis, E.â A., Roberts, D.C. & Samaha, A.â N. ( 2015 ) How fast and how often: the pharmacokinetics of drug use are decisive in addiction. Neurosci. Biobehav. Rev., 56, 166 â 179.
dc.identifier.citedreferenceAllain, F., Roberts, D.C., Levesque, D. & Samaha, A.N. ( 2017 ) Intermittent intake of rapid cocaine injections promotes robust psychomotor sensitization, increased incentive motivation for the drug and mGlu2/3 receptor dysregulation. Neuropharmacology, 117, 227 â 237.
dc.identifier.citedreferenceBalster, R.L. & Schuster, C.R. ( 1973 ) Fixedâ interval schedule of cocaine reinforcement: effect of dose and infusion duration1. J. Exp. Anal. Behav., 20, 119 â 129.
dc.identifier.citedreferenceBenwell, M.E. & Balfour, D.J. ( 1992 ) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br. J. Pharmacol., 105, 849 â 856.
dc.identifier.citedreferenceBerridge, M.S., Apana, S.M., Nagano, K.K., Berridge, C.E., Leisure, G.P. & Boswell, M.V. ( 2010 ) Smoking produces rapid rise of [11C]nicotine in human brain. Psychopharmacology, 209, 383 â 394.
dc.identifier.citedreferenceBouayadâ Gervais, K., Minogianis, E.â A., Lévesque, D. & Samaha, A.â N. ( 2014 ) The selfâ administration of rapidly delivered cocaine promotes increased motivation to take the drug: contributions of prior levels of operant responding and cocaine intake. Psychopharmacology, 231, 4241 â 4252.
dc.identifier.citedreferenceBradberry, C.W., Nobiletti, J.B., Elsworth, J.D., Murphy, B., Jatlow, P. & Roth, R.H. ( 1993 ) Cocaine and cocaethylene: microdialysis comparison of brain drug levels and effects on dopamine and serotonin. J. Neurochem., 60, 1429 â 1435.
dc.identifier.citedreferenceBrodnik, Z.D., Ferris, M.J., Jones, S.R. & España, R.A. ( 2017 ) Reinforcing doses of intravenous cocaine produce only modest dopamine uptake inhibition. ACS Chem. Neurosci., 8, 281 â 289.
dc.identifier.citedreferenceBrown, P.L. & Kiyatkin, E.A. ( 2005 ) Brain temperature change and movement activation induced by intravenous cocaine delivered at various injection speeds in rats. Psychopharmacology, 181, 299 â 308.
dc.identifier.citedreferenceChow, H.H.S., Chen, Z. & Matsuura, G.T. ( 1999 ) Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J. Pharm. Sci., 88, 754 â 758.
dc.identifier.citedreferenceComer, S.D., Collins, E.D., MacArthur, R.B. & Fischman, M.W. ( 1999 ) Comparison of intravenous and intranasal heroin selfâ administration by morphineâ maintained humans. Psychopharmacology, 143, 327 â 338.
dc.identifier.citedreferenceDutta, S., Matsumoto, Y., Gothgen, N.U. & Ebling, W.F. ( 1997 ) Concentrationâ EEG effect relationship of propofol in rats. J. Pharm. Sci., 86, 37 â 43.
dc.identifier.citedreferenceEssman, W.D., Singh, A. & Lucki, I. ( 1994 ) Serotonergic properties of cocaine: effects on a 5â HT2 receptorâ mediated behavior and on extracellular concentrations of serotonin and dopamine. Pharmacol. Biochem. Behav., 49, 107 â 113.
dc.identifier.citedreferenceEveritt, B.J. & Robbins, T.W. ( 2005 ) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci., 8, 1481 â 1489.
dc.identifier.citedreferenceFerrario, C., Shou, M., Samaha, A., Watson, C., Kennedy, R. & Robinson, T. ( 2008 ) The rate of intravenous cocaine administration alters câ fos mRNA expression and the temporal dynamics of dopamine, but not glutamate, overflow in the striatum. Brain Res., 1209, 151 â 156.
dc.identifier.citedreferenceFischman, M. & Schuster, C. ( 1984 ) Injection duration of cocaine in humans. Fed. Proc., 43, 570.
dc.identifier.citedreferenceFornai, F., Torracca, M.T., Bassi, L., D’Errigo, D.A., Scalori, V. & Corsini, G.U. ( 1996 ) Norepinephrine loss selectively enhances chronic nigrostriatal dopamine depletion in mice and rats. Brain Res., 735, 349 â 353.
dc.identifier.citedreferenceGerasimov, M.R., Franceschi, M., Volkow, N.D., Gifford, A., Gatley, S.J., Marsteller, D., Molina, P.E. & Dewey, S.L. ( 2000 ) Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. J. Pharmacol. Exp. Ther., 295, 51 â 57.
dc.identifier.citedreferenceGonon, F.G. ( 1988 ) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience, 24, 19 â 28.
dc.identifier.citedreferenceGossop, M., Griffiths, P., Powis, B. & Strang, J. ( 1994 ) Cocaine: patterns of use, route of administration, and severity of dependence. Brit. J. Psychiat., 164, 660 â 664.
dc.identifier.citedreferenceHatsukami, D.K. & Fischman, M.W. ( 1996 ) Crack cocaine and cocaine hydrochloride: are the differences myth or reality? JAMA, 276, 1580 â 1588.
dc.identifier.citedreferenceHemby, S., Jones, G., Hubert, G., Neill, D. & Justice, J. ( 1994 ) Assessment of the relative contribution of peripheral and central components in cocaine place conditioning. Pharmacol. Biochem. Behav., 47, 973 â 979.
dc.identifier.citedreferenceHenningfield, J.E. & Keenan, R.M. ( 1993 ) Nicotine delivery kinetics and abuse liability. J. Consult. Clin. Psych., 61, 743 â 750.
dc.identifier.citedreferenceHurd, Y.L. & Ungerstedt, U. ( 1989 ) Cocaine: an in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse, 3, 48 â 54.
dc.identifier.citedreferenceHurd, Y.L., Kehr, J. & Ungerstedt, U. ( 1988 ) In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow in the rat brain. J. Neurochem., 51, 1314 â 1316.
dc.identifier.citedreferenceJavaid, J., Fischman, M., Schuster, C.R., Dekirmenjian, H. & Davis, J. ( 1978 ) Cocaine plasma concentration: relation to physiological and subjective effects in humans. Science, 202, 227 â 228.
dc.identifier.citedreferenceJeffcoat, A.R., Perezâ Reyes, M., Hill, J.M., Sadler, B.M. & Cook, C.E. ( 1989 ) Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking. Drug Metab. Dispos., 17, 153 â 159.
dc.identifier.citedreferenceJones, R.T. ( 1984 ) The pharmacology of cocaine. NIDA Res. MG., 50, 34 â 53.
dc.identifier.citedreferenceJones, R.T. ( 1990 ) The pharmacology of cocaine smoking in humans. NIDA Res. MG., 99, 30 â 41.
dc.identifier.citedreferenceKalivas, P.W. & Duffy, P. ( 1990 ) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse, 5, 48 â 58.
dc.identifier.citedreferenceKiyatkin, E., Kiyatkin, D. & Rebec, G. ( 2000 ) Phasic inhibition of dopamine uptake in nucleus accumbens induced by intravenous cocaine in freely behaving rats. Neuroscience, 98, 729 â 741.
dc.identifier.citedreferenceKolb, B., Gorny, G., Li, Y., Samaha, A.â N. & Robinson, T.E. ( 2003 ) Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc. Natl. Acad. Sci. USA, 100, 10523 â 10528.
dc.identifier.citedreferenceLarson, J. & Lynch, G. ( 1986 ) Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science, 232, 985 â 988.
dc.identifier.citedreferenceLinâ Chu, G., Robinson, T.E. & Becker, J.B. ( 1985 ) Sensitization of rotational behavior produced by a single exposure to cocaine. Pharmacol. Biochem. Behav., 22, 901 â 903.
dc.identifier.citedreferenceLiu, Y., Roberts, D. & Morgan, D. ( 2005 ) Sensitization of the reinforcing effects of selfâ administered cocaine in rats: effects of dose and intravenous injection speed. Eur. J. Neurosci., 22, 195 â 200.
dc.identifier.citedreferenceMarsch, L.A., Bickel, W.K., Badger, G.J., Rathmell, J.P., Swedberg, M.D., Jonzon, B. & Norstenâ Höög, C. ( 2001 ) Effects of infusion rate of intravenously administered morphine on physiological, psychomotor, and selfâ reported measures in humans. J. Pharmacol. Exp. Ther., 299, 1056 â 1065.
dc.identifier.citedreferenceMejiasâ Aponte, C.A., Ye, C., Bonci, A., Kiyatkin, E.A. & Morales, M. ( 2015 ) A subpopulation of neurochemicallyâ identified ventral tegmental area dopamine neurons is excited by intravenous cocaine. J. Neurosci., 35, 1965 â 1978.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.