Show simple item record

Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor

dc.contributor.authorNovak, Caymen M.
dc.contributor.authorHorst, Eric N.
dc.contributor.authorTaylor, Charles C.
dc.contributor.authorLiu, Catherine Z.
dc.contributor.authorMehta, Geeta
dc.date.accessioned2019-10-30T15:29:37Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-10-30T15:29:37Z
dc.date.issued2019-11
dc.identifier.citationNovak, Caymen M.; Horst, Eric N.; Taylor, Charles C.; Liu, Catherine Z.; Mehta, Geeta (2019). "Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor." Biotechnology and Bioengineering 116(11): 3084-3097.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/151824
dc.description.abstractBreast cancer cells experience a range of shear stresses in the tumor microenvironment (TME). However most current in vitro three‐dimensional (3D) models fail to systematically probe the effects of this biophysical stimuli on cancer cell metastasis, proliferation, and chemoresistance. To investigate the roles of shear stress within the mammary and lung pleural effusion TME, a bioreactor capable of applying shear stress to cells within a 3D extracellular matrix was designed and characterized. Breast cancer cells were encapsulated within an interpenetrating network hydrogel and subjected to shear stress of 5.4 dynes cm−2 for 72 hr. Finite element modeling assessed shear stress profiles within the bioreactor. Cells exposed to shear stress had significantly higher cellular area and significantly lower circularity, indicating a motile phenotype. Stimulated cells were more proliferative than static controls and showed higher rates of chemoresistance to the anti‐neoplastic drug paclitaxel. Fluid shear stress‐induced significant upregulation of the PLAU gene and elevated urokinase activity was confirmed through zymography and activity assay. Overall, these results indicate that pulsatile shear stress promotes breast cancer cell proliferation, invasive potential, chemoresistance, and PLAU signaling.A shear stress bioreactor was used to apply 3D shear stress stimulus to breast cancer cell lines encapsulated within an interpenetrating network hydrogel. Stimulated cells showed enhanced cellular area, elongation, proliferation, chemoresistance, and upregulation of PLAU and its consequential protein urokinase plasminogen activator (uPA). These results demonstrate the importance of mechanical stimulation consideration within the cancer microenvironment when investigating treatment potentials and chemotherapeutic effectiveness.
dc.publisherWiley Periodicals, Inc.
dc.subject.othershear stress
dc.subject.other3D bioreactor
dc.subject.otherinterpenetrating hydrogel
dc.subject.othermechanotransduction
dc.subject.otherPLAU
dc.subject.otherbreast cancer
dc.titleFluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151824/1/bit27119.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151824/2/bit27119_am.pdf
dc.identifier.doi10.1002/bit.27119
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceSokabe, T., Yamamoto, K., Ohura, N., Nakatsuka, H., Qin, K., Obi, S., … Ando, J. ( 2004 ). Differential regulation of urokinase‐type plasminogen activator expression by fluid shear stress in human coronary artery endothelial cells. American Journal of Physiology‐Heart and Circulatory Physiology, 287, H2027 – H2034.
dc.identifier.citedreferencePatil, C. B., Gupta, A., Gupta, R., Dixit, R., Gupta, N., & Indushekar, V. ( 2015 ). Carcinoma breast related metastatic pleural effusion: A thoracoscopic approach. Clinical Cancer Investigation Journal, 4, 633.
dc.identifier.citedreferencePedersen, J. A., Boschetti, F., & Swartz, M. A. ( 2007 ). Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. Journal of Biomechanics, 40, 1484 – 1492.
dc.identifier.citedreferencePedersen, J. A., Lichter, S., & Swartz, M. A. ( 2010 ). Cells in 3D matrices under interstitial flow: Effects of extracellular matrix alignment on cell shear stress and drag forces. Journal of Biomechanics, 43, 900 – 905.
dc.identifier.citedreferencePolacheck, W. J., Charest, J. L., & Kamm, R. D. ( 2011 ). Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 108, 11115 – 111120.
dc.identifier.citedreferencePolacheck, W. J., German, A. E., Mammoto, A., Ingber, D. E., & Kamm, R. D. ( 2014 ). Mechanotransduction of fluid stresses governs 3D cell migration. Proceedings of the National Academy of Sciences of the United States of America, 111, 2447 – 2452.
dc.identifier.citedreferenceQazi, H, Shi, Z‐D, & Tarbell, JM. ( 2011 ). Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS One, 6, e20348.
dc.identifier.citedreferenceRao, J. S. ( 2003 ). Molecular mechanisms of glioma invasiveness: The role of proteases. Nature Reviews Cancer, 3, 489 – 501.
dc.identifier.citedreferenceRegmi, S., Fu, A., & Luo, K. Q. ( 2017 ). High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Scientific Reports, 7, 39975.
dc.identifier.citedreferenceRijal, G., & Li, W. ( 2016 ). 3D scaffolds in breast cancer research. Biomaterials, 81, 135 – 156.
dc.identifier.citedreferenceRizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., … Chan, T. A. ( 2015 ). Mutational landscape determines sensitivity to PD‐1 blockade in non–small cell lung cancer. Science, 348, 124 – 128.
dc.identifier.citedreferenceRotenberg, M. Y., Ruvinov, E., Armoza, A., & Cohen, S. ( 2012 ). A multi‐shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs. Lab on a Chip, 12, 2696 – 2703.
dc.identifier.citedreferenceSamani, A., Zubovits, J., & Plewes, D. ( 2007 ). Elastic moduli of normal and pathological human breast tissues: An inversion‐technique‐based investigation of 169 samples. Physics in Medicine and Biology, 52, 1565 – 1576.
dc.identifier.citedreferenceSarkar, J., & Kumar, A. ( 2016 ). Thermo‐responsive polymer aided spheroid culture in cryogel based platform for high throughput drug screening. The Analyst, 141, 2553 – 2567.
dc.identifier.citedreferenceSepiashvili, L., Hui, A., Ignatchenko, V., Shi, W., Su, S., Xu, W., … Kislinger, T. ( 2012 ). Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line‐based discovery strategy. Molecular & Cellular Proteomics, 11, 1404 – 1415.
dc.identifier.citedreferenceShieh, A. C., Rozansky, H. A., Hinz, B., & Swartz, M. A. ( 2011 ). Tumor cell invasion is promoted by interstitial flow‐induced matrix priming by stromal fibroblasts. Cancer Research, 71, 790 – 800.
dc.identifier.citedreferenceShieh, A. C., & Swartz, M. A. ( 2011 ). Regulation of tumor invasion by interstitial fluid flow. Physical Biology, 8, 015012.
dc.identifier.citedreferenceSiegel, R. L., Miller, K. D., & Jemal, A. ( 2018 ). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7 – 30.
dc.identifier.citedreferenceSung, K. E., Su, X., Berthier, E., Pehlke, C., Friedl, A., & Beebe, D. J. ( 2013 ). Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One, 8, e76373.
dc.identifier.citedreferenceSwartz, M. A., & Lund, A. W. ( 2012 ). Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nature Reviews Cancer, 12, 210 – 219.
dc.identifier.citedreferenceTang, L., & Han, X. ( 2013 ). The urokinase plasminogen activator system in breast cancer invasion and metastasis. Biomedicine & Pharmacotherapy, 67, 179 – 182.
dc.identifier.citedreferenceTriantafillu, U. L., Park, S., Klaassen, N. L., Raddatz, A. D., & Kim, Y. ( 2017 ). Fluid shear stress induces cancer stem cell‐like phenotype in MCF7 breast cancer cell line without inducing epithelial to mesenchymal transition. International Journal of Oncology, 50, 993 – 1001. http://www.spandidos‐publications.com/10.3892/ijo.2017.3865/abstract
dc.identifier.citedreferenceUlrich, T. A., Jain, A., Tanner, K., MacKay, J. L., & Kumar, S. ( 2010 ). Probing cellular mechanobiology in three‐dimensional culture with collagen–agarose matrices. Biomaterials, 31, 1875 – 1884.
dc.identifier.citedreferenceUlrich, T. A., Lee, T. G., Shon, H. K., Moon, D. W., & Kumar, S. ( 2011 ). Microscale mechanisms of agarose‐induced disruption of collagen remodeling. Biomaterials, 32, 5633 – 5642.
dc.identifier.citedreferenceWaters, C. M., Glucksberg, M. R., Depaola, N., Chang, J., & Grotberg, J. B. ( 1996 ). Shear stress alters pleural mesothelial cell permeability in culture. Journal of Applied Physiology, 81, 448 – 458.
dc.identifier.citedreferenceWeigelt, B., Ghajar, C. M., & Bissell, M. J. ( 2014 ). The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Advanced Drug Delivery Reviews, 69, 42 – 51.
dc.identifier.citedreferenceWeinbaum, S., Cowin, S. C., & Zeng, Y. ( 1994 ). A model for the excitation of osteocytes by mechanical loading‐induced bone fluid shear stresses. Journal of Biomechanics, 27, 339 – 360.
dc.identifier.citedreferenceWirtz, D., Konstantopoulos, K., & Searson, P. C. ( 2011 ). The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 11, 512 – 522.
dc.identifier.citedreferenceXiong, N., Li, S., Tang, K., Bai, H., Peng, Y., Yang, H., … Liu, Y. ( 2017 ). Involvement of caveolin‐1 in low shear stress‐induced breast cancer cell motility and adhesion: Roles of FAK/Src and ROCK/p‐MLC pathways. Biochimica et Biophysica Acta (BBA) ‐ Molecular Cell Research, 1864, 12 – 22.
dc.identifier.citedreferenceYang, H., Guan, L., Li, S., Jiang, Y., Xiong, N., Li, L., … Liu, Y. ( 2016 ). Mechanosensitive caveolin‐1 activation‐induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget, 7, 16227 – 16247.
dc.identifier.citedreferenceYao, Y., Rabodzey, A., & Dewey, C. F. ( 2007 ). Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. American Journal of Physiology‐Heart and Circulatory Physiology, 293, H1023 – H1030.
dc.identifier.citedreferenceZhao, F., Li, L., Guan, L., Yang, H., Wu, C., & Liu, Y. ( 2014 ). Roles for GP IIb/IIIa and αvβ3 integrins in MDA‐MB‐231 cell invasion and shear flow‐induced cancer cell mechanotransduction. Cancer Letters, 344, 62 – 73.
dc.identifier.citedreferenceDuffy, M. J. ( 2003 ). The urokinase plasminogen activator system: Role in malignancy. Current Pharmaceutical Design, 10, 39 – 49. http://www.eurekaselect.com/62195/article
dc.identifier.citedreferenceDuffy, M. J., McGowan, P. M., Harbeck, N., Thomssen, C., & Schmitt, M. ( 2014 ). uPA and PAI‐1 as biomarkers in breast cancer: Validated for clinical use in level‐of‐evidence‐1 studies. Breast Cancer Research, 16, 428.
dc.identifier.citedreferenceAfrimzon, E., Botchkina, G., Zurgil, N., Shafran, Y., Sobolev, M., Moshkov, S., … Deutsch, M. ( 2016 ). Hydrogel microstructure live‐cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single‐element resolution. Lab on a Chip, 16, 1047 – 1062.
dc.identifier.citedreferenceAhearne, M., Yang, Y., Haj, A. J. E., Then, K. Y., & Liu, K. ‐K. ( 2005 ). Characterizing the viscoelastic properties of thin hydrogel‐based constructs for tissue engineering applications. Journal of the Royal Society Interface, 2, 455 – 463.
dc.identifier.citedreferenceAkimoto, S., Mitsumata, M., Sasaguri, T., & Yoshida, Y. ( 2000 ). Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin‐dependent kinase inhibitor p21Sdi1/Cip1/Waf1. Circulation Research, 86, 185 – 190.
dc.identifier.citedreferenceAvraham‐Chakim, L., Elad, D., Zaretsky, U., Kloog, Y., Jaffa, A., & Grisaru, D. ( 2013 ). Fluid‐flow induced wall shear stress and epithelial ovarian cancer peritoneal spreading. PLoS One, 8, e60965. http://search.proquest.com.proxy.lib.umich.edu/docview/1330895410/abstract/8C897248438C4093PQ/1
dc.identifier.citedreferenceAvvisato, C. L., Yang, X., Shah, S., Hoxter, B., Li, W., Gaynor, R., … Byers, S. W. ( 2007 ). Mechanical force modulates global gene expression and beta‐catenin signaling in colon cancer cells. Journal of Cell Science, 120, 2672 – 2682.
dc.identifier.citedreferenceBae, S. J., Park, J. T., Park, A. Y., Youk, J. H., Lim, J. W., Lee, H. W., … Jeong, J. ( 2018 ). Ex vivo shear‐wave elastography of axillary lymph nodes to predict nodal metastasis in patients with primary breast cancer. Journal of Breast Cancer, 21, 190 – 196.
dc.identifier.citedreferenceBarnes, JM, Nauseef, JT, & Henry, MD. ( 2012 ). Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One, 7, e50973.
dc.identifier.citedreferenceBersini, S., Jeon, J. S., Dubini, G., Arrigoni, C., Chung, S., Charest, J. L., … Kamm, R. D. ( 2014 ). A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials, 35, 2454 – 2461.
dc.identifier.citedreferenceBlackman, B. R., Garcı́a‐Cardeña, G., & Gimbrone Jr, M. A. ( 2002 ). A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. Journal of Biomechanical Engineering, 124, 397 – 407.
dc.identifier.citedreferenceBredemeier, M., Edimiris, P., Mach, P., Kubista, M., Sjöback, R., Rohlova, E., … Kasimir‐Bauer, S. ( 2017 ). Gene expression signatures in circulating tumor cells correlate with response to therapy in metastatic breast cancer. Clinical Chemistry, 63, 1585 – 1593.
dc.identifier.citedreferenceButcher, D. T., Alliston, T., & Weaver, V. M. ( 2009 ). A tense situation: Forcing tumour progression. Nature Reviews Cancer, 9, 108 – 122.
dc.identifier.citedreferenceChen, J., Wang, J., Chen, D., Yang, J., Yang, C., Zhang, Y., … Dou, J. ( 2013 ). Evaluation of characteristics of CD44+CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biology, 14, 7.
dc.identifier.citedreferenceDiamond, S. L., Eskin, S. G., & McIntire, L. V. ( 1989 ). Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science, 243, 1483 – 1485.
dc.identifier.citedreferenceDolan, J. M., Sim, F. J., Meng, H., & Kolega, J. ( 2012 ). Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. American Journal of Physiology‐Cell Physiology, 302, C1109 – C1118.
dc.identifier.citedreferenceWeaver, B. A. ( 2014 ). How Taxol/paclitaxel kills cancer cells. MBoC, 25, 2677 – 2681.
dc.identifier.citedreferenceDuFort, C. C., Paszek, M. J., & Weaver, V. M. ( 2011 ). Balancing forces: Architectural control of mechanotransduction. Nature Reviews Molecular Cell Biology, 12, 308 – 319.
dc.identifier.citedreferenceEssig, M., & Friedlander, G. ( 2003 ). Tubular shear stress and phenotype of renal proximal tubular cells. Journal of the American Society of Nephrology, 14, 33S – 35S.
dc.identifier.citedreferenceHaessler, U., Teo, J. C. M., Foretay, D., Renaud, P., & Swartz, M. A. ( 2012 ). Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integrative Biology, 4, 401 – 409.
dc.identifier.citedreferenceHarrell, M. I., Iritani, B. M., & Ruddell, A. ( 2007 ). Tumor‐induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. The American Journal of Pathology, 170, 774 – 786.
dc.identifier.citedreferenceHuang, H.‐Y., Jiang, Z.‐F., Li, Q.‐X., Liu, J.‐Y., Wang, T., Zhang, R., … Yang, A. ‐G. ( 2010 ). Inhibition of human breast cancer cell invasion by siRNA against urokinase‐type plasminogen activator. Cancer Investigation, 28, 689 – 697.
dc.identifier.citedreferenceHwang, C. M., Sant, S., Masaeli, M., Kachouie, N. N., Zamanian, B., Lee, S.‐H., & Khademhosseini, A. ( 2010 ). Fabrication of three‐dimensional porous cell‐laden hydrogel for tissue engineering. Biofabrication, 2, 035003.
dc.identifier.citedreferenceHyler, A. R., Baudoin, N. C., Brown, M. S., Stremler, M. A., Cimini, D., Davalos, R. V., & Schmelz, E. M. ( 2018 ). Fluid shear stress impacts ovarian cancer cell viability, subcellular organization, and promotes genomic instability. PLoS One, 13, e0194170.
dc.identifier.citedreferenceIp, C. K. M., Li, S.‐S., Tang, M. Y. H., Sy, S. K. H., Ren, Y., Shum, H. C., & Wong, A. S. T. ( 2016 ). Stemness and chemoresistance in epithelial ovarian carcinoma cells under shear stress. Scientific Reports, 6, 1 – 11. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887794/
dc.identifier.citedreferenceJain, R. K., Martin, J. D., & Stylianopoulos, T. ( 2014 ). The role of mechanical forces in tumor growth and therapy. Annual Review of Biomedical Engineering, 16, 321 – 346.
dc.identifier.citedreferenceKawai, Y., Kaidoh, M., Yokoyama, Y., & Ohhashi, T. ( 2013 ). Cell surface F1/Fo ATP synthase contributes to interstitial flow‐mediated development of the acidic microenvironment in tumor tissues. American Journal of Physiology‐Cell Physiology, 305, C1139 – C1150.
dc.identifier.citedreferenceLake, S. P., Hald, E. S., & Barocas, V. H. ( 2011 ). Collagen‐agarose co‐gels as a model for collagen‐matrix interaction in soft tissues subjected to indentation. Journal of Biomedical Materials Research, 99A, 507 – 515.
dc.identifier.citedreferenceLi, Q., Chen, C., Kapadia, A., Zhou, Q., Harper, M. K., Schaack, J., & Labarbera, D. V. ( 2011 ). 3D models of epithelial‐mesenchymal transition in breast cancer metastasis: High‐throughput screening assay development, validation, and pilot screen. Journal of Biomolecular Screening, 16, 141 – 154.
dc.identifier.citedreferenceLivak, K. J., & Schmittgen, T. D. ( 2001 ). Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402 – 408.
dc.identifier.citedreferenceLoessner, D., Stok, K. S., Lutolf, M. P., Hutmacher, D. W., Clements, J. A., & Rizzi, S. C. ( 2010 ). Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials, 31, 8494 – 8506.
dc.identifier.citedreferenceLunt, S. J., Fyles, A., Hill, R. P., & Milosevic, M. ( 2008 ). Interstitial fluid pressure in tumors: Therapeutic barrier and biomarker of angiogenesis. Future Oncology, 4, 793 – 802.
dc.identifier.citedreferenceMahmood, N., Mihalcioiu, C., & Rabbani, S. A. ( 2018 ). Multifaceted role of the urokinase‐type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prognostic, and therapeutic applications. Frontiers in Oncology, 8, 1 – 21. https://www.frontiersin.org/articles/10.3389/fonc.2018.00024/full
dc.identifier.citedreferenceMcGrail, D. J., Kieu, Q. M. N., & Dawson, M. R. ( 2014 ). The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho‐ROCK pathway. Journal of Cell Science, 127, 2621 – 2626.
dc.identifier.citedreferenceMcGrail, D. J., Kieu, Q. M. N., Iandoli, J. A., & Dawson, M. R. ( 2015 ). Actomyosin tension as a determinant of metastatic cancer mechanical tropism. Physical Biology, 12, 026001.
dc.identifier.citedreferenceMitchell, M. J., & King, M. R. ( 2013a ). Fluid shear stress sensitizes cancer cells to receptor‐mediated apoptosis via trimeric death receptors. New Journal of Physics, 15, 015008.
dc.identifier.citedreferenceMitchell, M. J., & King, M. R. ( 2013b ). Computational and experimental models of cancer cell response to fluid shear stress. Frontiers in Oncology, 3, 1 – 11. http://journal.frontiersin.org/article/10.3389/fonc.2013.00044/abstract.
dc.identifier.citedreferenceMunson, J. M., & Shieh, A. C. ( 2014 ). Interstitial fluid flow in cancer: Implications for disease progression and treatment. CMAR, 6, 317 – 328.
dc.identifier.citedreferenceNetti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J., & Jain, R. K. ( 2000 ). Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Research, 60, 2497 – 2503.
dc.identifier.citedreferencePapadaki, M., Ruef, J., Nguyen, K. T., Li, F., Patterson, C., Eskin, S. G., … Runge, M. S. ( 1998 ). Differential regulation of protease activated receptor‐1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells. Circulation Research, 83, 1027 – 1034.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.