Show simple item record

Magnetic Alignment of Polymer Macro‐Nanodiscs Enables Residual‐Dipolar‐Coupling‐Based High‐Resolution Structural Studies by NMR Spectroscopy

dc.contributor.authorRavula, Thirupathi
dc.contributor.authorRamamoorthy, Ayyalusamy
dc.date.accessioned2019-10-30T15:29:42Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-10-30T15:29:42Z
dc.date.issued2019-10-14
dc.identifier.citationRavula, Thirupathi; Ramamoorthy, Ayyalusamy (2019). "Magnetic Alignment of Polymer Macro‐Nanodiscs Enables Residual‐Dipolar‐Coupling‐Based High‐Resolution Structural Studies by NMR Spectroscopy." Angewandte Chemie 131(42): 15067-15070.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/151827
dc.description.abstractExperimentally measured residual dipolar couplings (RDCs) are highly valuable for atomic‐resolution structural and dynamic studies of molecular systems ranging from small molecules to large proteins by solution NMR spectroscopy. Here we demonstrate the first use of magnetic‐alignment behavior of lyotropic liquid‐crystalline polymer macro‐nanodiscs (>20 nm in diameter) as a novel alignment medium for the measurement of RDCs using high‐resolution NMR. The easy preparation of macro‐nanodiscs, their high stability against pH changes and the presence of divalent metal ions, and their high homogeneity make them an efficient tool to investigate a wide range of molecular systems including natural products, proteins, and RNA.Korrekt ausgerichtet: Polymer‐Nanoscheiben werden als Ausrichtungsmedium für die Messung dipolarer Restkopplungen mit hochauflösender NMR‐Spektroskopie genutzt. Ihre einfache Herstellung, hohe Stabilität gegen pH‐Änderungen und die Anwesenheit zweiwertiger Metallionen sowie ihre hohe Homogenität machen sie zu einem effizienten Werkzeug für die Untersuchung vieler molekularer Systeme wie Naturstoffe, Proteine und RNA.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMagnetische Ausrichtung
dc.subject.otherCytochrom c
dc.subject.otherNMR-Spektroskopie
dc.subject.otherPolymer-Nanoscheiben
dc.subject.otherDipolare Restkopplung
dc.titleMagnetic Alignment of Polymer Macro‐Nanodiscs Enables Residual‐Dipolar‐Coupling‐Based High‐Resolution Structural Studies by NMR Spectroscopy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151827/1/ange201907655-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151827/2/ange201907655_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151827/3/ange201907655.pdf
dc.identifier.doi10.1002/ange.201907655
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceR. Zhang, I. D. Sahu, L. Liu, A. Osatuke, R. G. Comer, C. Dabney-Smith, G. A. Lorigan, Biochim. Biophys. Acta Biomembr. 2015, 1848, 329 – 333.
dc.identifier.citedreferenceN. Tjandra, A. Bax, Science 1997, 278, 1111 – 1114.
dc.identifier.citedreferenceJ. H. Prestegard, C. M. Bougault, A. I. Kishore, Chem. Rev. 2004, 104, 3519 – 3540.
dc.identifier.citedreferenceA. Bax, Protein Sci. 2003, 12, 1 – 16.
dc.identifier.citedreferenceR. S. Lipsitz, N. Tjandra, Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 387 – 413.
dc.identifier.citedreferenceT. Ravula, N. Z. Hardin, S. K. Ramadugu, S. J. Cox, A. Ramamoorthy, Angew. Chem. Int. Ed. 2018, 57, 1342 – 1345; Angew. Chem. 2018, 130, 1356 – 1359; T. Ravula, N. Z. Hardin, S. K. Ramadugu, S. J. Cox, A. Ramamoorthy, Angew. Chem. Int. Ed. 2019, 58, https://doi.org/10.1002/anie.201906504; Angew. Chem. 2019, 131, https://doi.org/10.1002/ange.201906504.
dc.identifier.citedreferenceS. Lindhoud, V. Carvalho, J. W. Pronk, M. E. Aubin-Tam, Biomacromolecules 2016, 17, 1516 – 1522.
dc.identifier.citedreferenceM. C. Fiori, Y. Jiang, G. A. Altenberg, H. Liang, Sci. Rep. 2017, 7, 7432.
dc.identifier.citedreferenceT. Ravula, N. Z. Hardin, S. K. Ramadugu, A. Ramamoorthy, Langmuir 2017, 33, 10655 – 10662.
dc.identifier.citedreferenceS. C. L. Hall, C. Tognoloni, J. Charlton, E. C. Bragginton, A. J. Rothnie, P. Sridhar, M. Wheatley, T. J. Knowles, T. Arnold, K. J. Edler, T. R. Dafforn, Nanoscale 2018, 10, 10609 – 10619.
dc.identifier.citedreferenceJ. Radoicic, S. H. Park, S. J. Opella, Biophys. J. 2018, 115, 22 – 25.
dc.identifier.citedreferenceM. Ottiger, F. Delaglio, A. Bax, J. Magn. Reson. 1998, 131, 373 – 378.
dc.identifier.citedreferenceT. Ravula, N. Z. Hardin, J. Bai, S. C. Im, L. Waskell, A. Ramamoorthy, Chem. Commun. 2018, 54, 9615 – 9618.
dc.identifier.citedreferenceM. Hüttemann, P. Pecina, M. Rainbolt, T. H. Sanderson, V. E. Kagan, L. Samavati, J. W. Doan, I. Lee, Mitochondrion 2011, 11, 369 – 381.
dc.identifier.citedreferenceB. E. Ramirez, A. Bax, J. Am. Chem. Soc. 1998, 120, 9106 – 9107.
dc.identifier.citedreferenceJ. L. Lorieau, A. S. Maltsev, J. M. Louis, A. Bax, J. Biomol. NMR 2013, 55, 369 – 377.
dc.identifier.citedreferenceC. Sun, S. Benlekbir, P. Venkatakrishnan, Y. Wang, S. Hong, J. Hosler, E. Tajkhorshid, J. L. Rubinstein, R. B. Gennis, Nature 2018, 557, 123 – 126.
dc.identifier.citedreferenceS. C. Lee, T. J. Knowles, V. L. Postis, M. Jamshad, R. A. Parslow, Y. P. Lin, A. Goldman, P. Sridhar, M. Overduin, S. P. Muench, T. R. Dafforn, Nat. Protoc. 2016, 11, 1149 – 1162.
dc.identifier.citedreferenceZ. Stroud, S. C. L. Hall, T. R. Dafforn, Methods 2018, 147, 106 – 117.
dc.identifier.citedreferenceJ. M. Dörr, S. Scheidelaar, M. C. Koorengevel, J. J. Dominguez, M. Schäfer, C. A. van Walree, J. A. Killian, Eur. Biophys. J. 2016, 45, 3 – 21.
dc.identifier.citedreferenceT. Laursen, J. Borch, C. Knudsen, K. Bavishi, F. Torta, H. J. Martens, D. Silvestro, N. S. Hatzakis, M. R. Wenk, T. R. Dafforn, C. E. Olsen, M. S. Motawia, B. Hamberger, B. L. Møller, J.-E. Bassard, Science 2016, 354, 890.
dc.identifier.citedreferenceS. C. Lee, N. L. Pollock, Biochem. Soc. Trans. 2016, 44, 1011 – 1018.
dc.identifier.citedreferenceM. C. Orwick, P. J. Judge, J. Procek, L. Lindholm, A. Graziadei, A. Engel, G. Grobner, A. Watts, Angew. Chem. Int. Ed. 2012, 51, 4653 – 4657; Angew. Chem. 2012, 124, 4731 – 4735.
dc.identifier.citedreferenceJ. M. Dörr, M. C. Koorengevel, M. Schäfer, A. V. Prokofyev, S. Scheidelaar, E. A. W. van der Cruijsen, T. R. Dafforn, M. Baldus, J. A. Killian, Proc. Natl. Acad. Sci. USA 2014, 111, 18607 – 18612.
dc.identifier.citedreferenceM. Orwick-Rydmark, J. E. Lovett, A. Graziadei, L. Lindholm, M. R. Hicks, A. Watts, Nano Lett. 2012, 12, 4687 – 4692.
dc.identifier.citedreferenceT. J. Knowles, R. Finka, C. Smith, Y. P. Lin, T. Dafforn, M. Overduin, J. Am. Chem. Soc. 2009, 131, 7484 – 7485.
dc.identifier.citedreferenceA. O. Oluwole, B. Danielczak, A. Meister, J. O. Babalola, C. Vargas, S. Keller, Angew. Chem. Int. Ed. 2017, 56, 1919 – 1924; Angew. Chem. 2017, 129, 1946 – 1951.
dc.identifier.citedreferenceK. Yasuhara, J. Arakida, T. Ravula, S. K. Ramadugu, B. Sahoo, J. I. Kikuchi, A. Ramamoorthy, J. Am. Chem. Soc. 2017, 139, 18657 – 18663.
dc.identifier.citedreferenceN. Z. Hardin, T. Ravula, G. Di Mauro, A. Ramamoorthy, Small 2019, 15, 1804813.
dc.identifier.citedreferenceT. Ravula, S. K. Ramadugu, G. Di Mauro, A. Ramamoorthy, Angew. Chem. Int. Ed. 2017, 56, 11466 – 11470; Angew. Chem. 2017, 129, 11624 – 11628; T. Ravula, S. K. Ramadugu, G. Di Mauro, A. Ramamoorthy, Angew. Chem. Int. Ed. 2019, 58, https://doi.org/10.1002/anie.201906502; Angew. Chem. 2019, 131, https://doi.org/10.1002/ange.201906502.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.