Show simple item record

Strong Electronic Interaction of Amorphous Fe2O3 Nanosheets with Single‐Atom Pt toward Enhanced Carbon Monoxide Oxidation

dc.contributor.authorChen, Wenlong
dc.contributor.authorMa, Yanling
dc.contributor.authorLi, Fan
dc.contributor.authorPan, Lei
dc.contributor.authorGao, Wenpei
dc.contributor.authorXiang, Qian
dc.contributor.authorShang, Wen
dc.contributor.authorSong, Chengyi
dc.contributor.authorTao, Peng
dc.contributor.authorZhu, Hong
dc.contributor.authorPan, Xiaoqing
dc.contributor.authorDeng, Tao
dc.contributor.authorWu, Jianbo
dc.date.accessioned2019-10-30T15:29:50Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-10-30T15:29:50Z
dc.date.issued2019-10
dc.identifier.citationChen, Wenlong; Ma, Yanling; Li, Fan; Pan, Lei; Gao, Wenpei; Xiang, Qian; Shang, Wen; Song, Chengyi; Tao, Peng; Zhu, Hong; Pan, Xiaoqing; Deng, Tao; Wu, Jianbo (2019). "Strong Electronic Interaction of Amorphous Fe2O3 Nanosheets with Single‐Atom Pt toward Enhanced Carbon Monoxide Oxidation." Advanced Functional Materials 29(42): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/151833
dc.description.abstractPlatinum‐based catalysts are critical to several chemical processes, but their efficiency is not satisfying enough in some cases, because only the surface active‐site atoms participate in the reaction. Henceforth, catalysts with single‐atom dispersions are highly desirable to maximize their mass efficiency, but fabricating these structures using a controllable method is still challenging. Most previous studies have focused on crystalline materials. However, amorphous materials may have enhanced performance due to their distorted and isotropic nature with numerous defects. Here reported is the facile synthesis of an atomically dispersed catalyst that consists of single Pt atoms and amorphous Fe2O3 nanosheets. Rational control can regulate the morphology from single atom clusters to sub‐nanoparticles. Density functional theory calculations show the synergistic effect resulted from the strong binding and stabilization of single Pt atoms with the strong metal‐support interaction between the in situ locally anchored Pt atoms and Fe2O3 lead to a weak CO adsorption. Moreover, the distorted amorphous Fe2O3 with O vacancies is beneficial for the activation of O2, which further facilitates CO oxidation on nearby Pt sites or interface sites between Pt and Fe2O3, resulting in the extremely high performance for CO oxidation of the atomic catalyst.An atomically Pt dispersed catalyst on amorphous Fe2O3 nanosheets is developed. The size effect of Pt and phase effect of support are explored. The synergistic effect results from the strong metal‐support interactions between the single Pt atoms and the amorphous Fe2O3 structure supports lead to an enhanced CO oxidation performance.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPt
dc.subject.otherFe2O3
dc.subject.otherCO oxidation
dc.subject.otheramorphous
dc.subject.othersingle atom
dc.titleStrong Electronic Interaction of Amorphous Fe2O3 Nanosheets with Single‐Atom Pt toward Enhanced Carbon Monoxide Oxidation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151833/1/adfm201904278-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151833/2/adfm201904278.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151833/3/adfm201904278_am.pdf
dc.identifier.doi10.1002/adfm.201904278
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceY. Zhou, D. E. Doronkin, M. L. Chen, S. Q. Wei, J. D. Grunwaldt, ACS Catal. 2016, 6, 7799.
dc.identifier.citedreferenceL. W. Guo, P. P. Du, X. P. Fu, C. Ma, J. Zeng, R. Si, Y. Y. Huang, C. J. Jia, Y. W. Zhang, C. H. Yan, Nat. Commun. 2016, 7, 13481.
dc.identifier.citedreferenceP. X. Liu, Y. Zhao, R. X. Qin, S. G. Mo, G. X. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. D. Zang, B. H. Wu, G. Fu, N. F. Zheng, Science 2016, 352, 797.
dc.identifier.citedreferenceJ. Lin, A. Q. Wang, B. T. Qiao, X. Y. Liu, X. F. Yang, X. D. Wang, J. X. Liang, J. X. Li, J. Y. Liu, T. Zhang, J. Am. Chem. Soc. 2013, 135, 15314.
dc.identifier.citedreferenceX. J. Zeng, J. L. Shui, X. F. Liu, Q. T. Liu, Y. C. Li, J. X. Shang, L. R. Zheng, R. H. Yu, Adv. Energy Mater. 2018, 8, 1701345.
dc.identifier.citedreferenceC. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H. T. Kim, K. J. J. Mayrhofer, H. Kim, M. Choi, Nat. Commun. 2016, 7, 10922.
dc.identifier.citedreferenceN. C. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. W. Xiao, R. Y. Li, T. K. Sham, L. M. Liu, G. A. Botton, X. L. Sun, Nat. Commun. 2016, 7, 13638.
dc.identifier.citedreferenceX. G. Li, W. T. Bi, L. Zhang, S. Tao, W. S. Chu, Q. Zhang, Y. Luo, C. Z. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427.
dc.identifier.citedreferenceS. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Angew. Chem. 2016, 128, 2098; Angew. Chem., Int. Ed. 2016, 55, 2058.
dc.identifier.citedreferenceH. H. Wei, K. Huang, D. Wang, R. Y. Zhang, B. H. Ge, J. Y. Ma, B. Wen, S. Zhang, Q. Y. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, H. Wu, Nat. Commun. 2017, 8, 1490.
dc.identifier.citedreferenceP. Z. Chen, T. P. Zhou, L. L. Xing, K. Xu, Y. Tong, H. Xie, L. D. Zhang, W. S. Yan, W. S. Chu, C. Z. Wu, Y. Xie, Angew. Chem. 2017, 129, 625; Angew. Chem., Int. Ed. 2017, 56, 610.
dc.identifier.citedreferenceL. B. Wang, W. B. Zhang, S. P. Wang, Z. H. Gao, Z. H. Luo, X. Wang, R. Zeng, A. W. Li, H. L. Li, M. L. Wang, X. S. Zheng, J. F. Zhu, W. H. Zhang, C. Ma, R. Si, J. Zeng, Nat. Commun. 2016, 7, 14036.
dc.identifier.citedreferenceC. Z. Zhu, S. F. Fu, Q. R. Shi, D. Du, Y. H. Lin, Angew. Chem. 2017, 129, 14132; Angew. Chem., Int. Ed. 2017, 56, 13944.
dc.identifier.citedreferencea) J. Kim, C. W. Roh, S. K. Sahoo, S. Yang, J. Bae, J. W. Han, H. Lee, Adv. Energy Mater. 2018, 8, 1701476; b) H. L. Li, L. B. Wang, Y. Z. Dai, Z. T. Pu, Z. H. Lao, Y. W. Chen, M. L. Wang, X. S. Zheng, J. F. Zhu, W. H. Zhang, R. Si, C. Ma, J. Zeng, Nat. Nanotechnol. 2018, 13, 411; c) L. Lin, S. Yao, R. Gao, X. Liang, Q. Yu, Y. Deng, J. Liu, M. Peng, Z. Jiang, S. Li, Y.‐W. Li, X.‐D. Wen, W. Zhou, D. Ma, Nat. Nanotechnol. 2019, 14, 354.
dc.identifier.citedreferencea) L. Wei, H. E. Karahan, S. L. Zhai, H. W. Liu, X. C. Chen, Z. Zhou, Y. J. Lei, Z. W. Liu, Y. Chen, Adv. Mater. 2017, 29, 1701410; b) Y. Z. Jiang, D. Zhang, Y. Li, T. Z. Yuan, N. Bahlawane, C. Liang, W. P. Sun, Y. H. Lu, M. Yan, Nano Energy 2014, 4, 23; c) W. C. Xu, H. X. Wang, Chin. J. Catal. 2017, 38, 991.
dc.identifier.citedreferencea) S. Q. Liu, H. R. Wen, Ying‐Guo, Y. W. Zhu, X. Z. Fu, R. Sun, C. P. Wong, Nano Energy 2018, 44, 7; b) J. S. Yang, J. J. Xu, Electrochem. Commun. 2003, 5, 306; c) B. R. Goldsmith, B. Peters, J. K. Johnson, B. C. Gates, S. L. Scott, ACS Catal. 2017, 7, 7543.
dc.identifier.citedreferenceS. Niu, R. McFeron, F. Godinez‐Salomon, B. S. Chapman, C. A. Damin, J. B. Tracy, V. Augustyn, C. P. Rhodes, Chem. Mater. 2017, 29, 7794.
dc.identifier.citedreferencea) Y. Zhao, L. L. Peng, B. R. Liu, G. H. Yu, Nano Lett. 2014, 14, 2849; b) P. Z. Chen, K. Xu, X. L. Li, Y. Q. Guo, D. Zhou, J. Y. Zhao, X. J. Wu, C. Z. Wu, Y. Xie, Chem. Sci. 2014, 5, 2251.
dc.identifier.citedreferenceX. Qin, J. M. Wang, J. Xie, F. Z. Li, L. Wen, X. H. Wang, Phys. Chem. Chem. Phys. 2012, 14, 2669.
dc.identifier.citedreferencea) D. Li, J. S. Zhou, X. H. Chen, H. H. Song, ACS Appl. Mater. Interfaces 2016, 8, 30899; b) Y. Huang, Z. X. Lin, M. B. Zheng, T. H. Wang, J. Z. Yang, F. S. Yuan, X. Y. Lu, L. Liu, D. P. Sun, J. Power Sources 2016, 307, 649.
dc.identifier.citedreferenceZ. L. Zhang, Y. H. Zhu, H. Asakura, B. Zhang, J. G. Zhang, M. X. Zhou, Y. Han, T. Tanaka, A. Q. Wang, T. Zhang, N. Yan, Nat. Commun. 2017, 8, 16100.
dc.identifier.citedreferenceD. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, X. H. Bao, Nat. Nanotechnol. 2016, 11, 218.
dc.identifier.citedreferenceL. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, P. Christopher, Nat. Mater. 2019, 18, 746.
dc.identifier.citedreferencea) P. W. Cai, J. H. Huang, J. X. Chen, Z. H. Wen, Angew. Chem. 2017, 129, 4936; Angew. Chem., Int. Ed. 2017, 56, 4858; b) F. C. Lei, Y. F. Sun, K. T. Liu, S. Gao, L. Liang, B. C. Pan, Y. Xie, J. Am. Chem. Soc. 2014, 136, 6826; c) D. F. Yan, Y. X. Li, J. Huo, R. Chen, L. M. Dai, S. Y. Wang, Adv. Mater. 2017, 29, 1606459; d) S. H. Ye, Z. X. Shi, J. X. Feng, Y. X. Tong, G. R. Li, Angew. Chem. 2018, 130, 2702; Angew. Chem., Int. Ed. 2018, 57, 2672.
dc.identifier.citedreferenceL. Xu, X. C. Xu, L. K. Ouyang, X. J. Yang, W. Mao, J. J. Su, Y. F. Han, J. Catal. 2012, 287, 114.
dc.identifier.citedreferencea) K. Liu, A. Q. Wang, T. Zhang, ACS Catal. 2012, 2, 1165; b) J. Lin, B. T. Qiao, J. Y. Liu, Y. Q. Huang, A. Q. Wang, L. Li, W. S. Zhang, L. F. Allard, X. D. Wang, T. Zhang, Angew. Chem. 2012, 124, 2974; Angew. Chem., Int. Ed. 2012, 51, 2920.
dc.identifier.citedreferencea) J. Bao, X. D. Zhang, B. Fan, J. J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. C. Pan, Y. Xie, Angew. Chem. 2015, 127, 7507; Angew. Chem., Int. Ed. 2015, 54, 7399; b) X. D. Zhang, H. X. Li, X. T. Lv, J. C. Xu, Y. X. Wang, C. He, N. Liu, Y. Q. Yang, Y. Wang, Chem. ‐ Eur. J. 2018, 24, 8822.
dc.identifier.citedreferencea) E. Tsuji, A. Imanishi, K. Fukui, Y. Nakato, Electrochim. Acta 2011, 56, 2009; b) D. Z. Wang, Z. P. Wang, C. L. Wang, P. Zhou, Z. Z. Wu, Z. H. Liu, Electrochem. Commun. 2013, 34, 219; c) D. W. Chen, C. L. Dong, Y. Q. Zou, D. Su, Y. C. Huang, L. Tao, S. Dou, S. H. Shen, S. Y. Wang, Nanoscale 2017, 9, 11969.
dc.identifier.citedreferencea) C. C. Chien, J. Z. Shi, T. J. Huang, Ind. Eng. Chem. Res. 1997, 36, 1544; b) W.‐P. Dow, T.‐J. Huang, J. Catal. 1996, 160, 171; c) D. Widmann, R. Leppelt, R. J. Behm, J. Catal. 2007, 251, 437; d) Z. Y. Pu, X. S. Liu, A. P. Jia, Y. L. Xie, J. Q. Lu, M. F. Luo, J. Phys. Chem. C 2008, 112, 15045; e) B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 2005, 307, 403.
dc.identifier.citedreferenceG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
dc.identifier.citedreferenceJ. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, 1992, 46, 6671.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
dc.identifier.citedreferenceH. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
dc.identifier.citedreferencea) B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634; b) H. S. Wei, X. Y. Liu, A. Q. Wang, L. L. Zhang, B. T. Qiao, X. F. Yang, Y. Q. Huang, S. Miao, J. Y. Liu, T. Zhang, Nat. Commun. 2014, 5, 5634; c) H. Yan, Y. Lin, H. Wu, W. H. Zhang, Z. H. Sun, H. Cheng, W. Liu, C. L. Wang, J. J. Li, X. H. Huang, T. Yao, J. L. Yang, S. Q. Wei, J. L. Lu, Nat. Commun. 2017, 8, 1070; d) J. Jones, H. F. Xiong, A. T. Delariva, E. J. Peterson, H. Pham, S. R. Challa, G. S. Qi, S. Oh, M. H. Wiebenga, X. I. P. Hernandez, Y. Wang, A. K. Datye, Science 2016, 353, 150; e) B. T. Qiao, A. Q. Wang, L. Li, Q. Q. Lin, H. S. Wei, J. Y. Liu, T. Zhang, ACS Catal. 2014, 4, 2113.
dc.identifier.citedreferenceX. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
dc.identifier.citedreferenceZ. Y. Li, Z. Yuan, X. N. Li, Y. X. Zhao, S. G. He, J. Am. Chem. Soc. 2014, 136, 14307.
dc.identifier.citedreferenceM. Moses‐DeBusk, M. Yoon, L. F. Allard, D. R. Mullins, Z. L. Wu, X. F. Yang, G. Veith, G. M. Stocks, C. K. Narula, J. Am. Chem. Soc. 2013, 135, 12634.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.