Show simple item record

The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations

dc.contributor.authorMoores, John E.
dc.contributor.authorKing, Penelope L.
dc.contributor.authorSmith, Christina L.
dc.contributor.authorMartinez, German M.
dc.contributor.authorNewman, Claire E.
dc.contributor.authorGuzewich, Scott D.
dc.contributor.authorMeslin, Pierre‐yves
dc.contributor.authorWebster, Christopher R.
dc.contributor.authorMahaffy, Paul R.
dc.contributor.authorAtreya, Sushil K.
dc.contributor.authorSchuerger, Andrew C.
dc.date.accessioned2019-10-30T15:29:59Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:29:59Z
dc.date.issued2019-08-28
dc.identifier.citationMoores, John E.; King, Penelope L.; Smith, Christina L.; Martinez, German M.; Newman, Claire E.; Guzewich, Scott D.; Meslin, Pierre‐yves ; Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Schuerger, Andrew C. (2019). "The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations." Geophysical Research Letters 46(16): 9430-9438.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/151840
dc.description.abstractThe upper bound of 50 parts per trillion by volume for Mars methane above 5 km established by the ExoMars Trace Gas Orbiter, substantially lower than the 410 parts per trillion by volume average measured overnight by the Curiosity Rover, places a strong constraint on the daytime methane flux at the Gale crater. We propose that these measurements may be largely reconciled by the inhibition of mixing near the surface overnight, whereby methane emitted from the subsurface accumulates within meters of the surface before being mixed below detection limits at dawn. A model of this scenario allows the first precise calculation of microseepage fluxes at Gale to be derived, consistent with a constant 1.5 à 10â 10 kg·mâ 2·solâ 1 (5.4 à 10â 5 tonnes·kmâ 2·yearâ 1) source at depth. Under this scenario, only 2.7 à 104 km2 of Mars’s surface may be emitting methane, unless a fast destruction mechanism exists.Plain Language SummaryThe ExoMars Trace Gas Orbiter and the Curiosity Rover have recorded different amounts of methane in the atmosphere on Mars. The Trace Gas Orbiter measured very little methane (<50 parts per trillion by volume) above 5 km in the sunlit atmosphere, while Curiosity measured substantially more (410 parts per trillion by volume) near the surface at night. In this paper we describe a framework which explains both measurements by suggesting that a small amount of methane seeps out of the ground constantly. During the day, this small amount of methane is rapidly mixed and diluted by vigorous convection, leading to low overall levels within the atmosphere. During the night, convection lessens, allowing methane to build up near the surface. At dawn, convection intensifies and the nearâ surface methane is mixed and diluted with much more atmosphere. Using this model and methane concentrations from both approaches, we are ableâ for the first timeâ to place a single number on the rate of seepage of methane at Gale crater which we find equivalent to 2.8 kg per Martian day. Future spacecraft measuring methane near the surface of Mars could determine how much methane seeps out of the ground in different locations, providing insight into what processes create that methane in the subsurface.Key PointsNighttime SAMâ TLS seasonal cycle enrichment measurements and TGO sunset/sunrise measurements are not in oppositionMicroseepage fluxes must be local to Gale, range from 0.82 to 4.6 kg/sol, and are consistent with a constant source at depthLittle of Mars experiences microseepage unless a fast destruction mechanism exists or Gale is very unusual
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.othermethane
dc.subject.otheratmosphere
dc.subject.otherMars
dc.subject.otherdust
dc.subject.otherboundary layer
dc.titleThe Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/1/grl59471-sup-0001-2019GL083800-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/2/grl59471_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/3/grl59471.pdf
dc.identifier.doi10.1029/2019GL083800
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMumma, M. J., Villanueva, G. L., Novak, R. E., Hewagama, T., Bonev, B. P., DiSanti, M. A., Mandell, A. M., & Smith, M. D. ( 2009 ). Strong release of methane on Mars in northern summer 2003. Science, 323 ( 5917 ), 1041 â 1045. https://doi.org/10.1126/science.1165243
dc.identifier.citedreferenceAtreya, S. K., Witasse, O., Chevrier, V. F., Forget, F., Mahaffy, P. R., Price, B., Webster, C. R., & Zurek, R. W. ( 2011 ). Methane on Mars: Current observations, interpretations, and future plans. Planetary and Space Science, 59 ( 2â 3 ), 133 â 136. https://doi.org/10.1016/j.pss.2010.10.008
dc.identifier.citedreferenceAtreya, S. K., Wong, A. S., Renno, N. O., Farrell, W. M., Delory, G. T., Sentman, D. D., Cummer, S. A., Marshall, J. R., Rafkin, S. C. R., & Catling, D. C. ( 2006 ). Oxidant enhancement in Martian dust devils and storms: Implications for life, and habitability, S. K. Atreya, Special issue on Space Physics, Mars, and Life. Astrobiology, 6 ( 3 ), 439 â 450.
dc.identifier.citedreferenceDelory, G. T., Farrell, W. M., Renno, N. O., Wong, A. S., Sentman, D. D., Cummer, S. A., Marshall, J. R., Rafkin, S. C. R., & Catling, D. C. ( 2006 ). Oxidant enhancement in Martian dust devils and storms: Storm electric fields and electron dissociative attachment, Special issue on Space Physics, Mars, and Life. Astrobiology, 6 ( 3 ), 451 â 462.
dc.identifier.citedreferenceEigenbrode, J. L., Summons, R. E., Steele, A., Freissinet, C., Millan, M., Navarroâ González, R., Sutter, B., McAdam, A. C., Franz, H. B., Glavin, D. P., Archer, P. D., Mahaffy, P. R., Conrad, P. G., Hurowitz, J. A., Grotzinger, J. P., Gupta, S., Ming, D. W., Sumner, D. Y., Szopa, C., Malespin, C., Buch, A., & Coll, P. ( 2018 ). Organic matter preserved in 3â billionâ yearâ old mudstones at Gale crater, Mars. Science, 360 ( 6393 ), 1096 â 1101. https://doi.org/10.1126/science.aas9185
dc.identifier.citedreferenceEtiope, G., & Oehler, D. Z. ( 2019 ). Methane spikes, background seasonality and nonâ detections on Mars: A geological perspective. Planetary and Space Science, 168, 52 â 61. https://doi.org/10.1016/j.pss.2019.02.001
dc.identifier.citedreferenceFuller, E. N., Schettler, P. D., & Giddings, J. C. ( 1966 ). New method for prediction of binary gasâ phase diffusion coefficients. Industrial and Engineering Chemistry, 58 ( 5 ), 18 â 27. https://doi.org/10.1021/ie50677a007
dc.identifier.citedreferenceGiuranna, M., Viscardy, S., Daerden, F., Neary, L., Etiope, G., Oehler, D., Formisano, V., Aronica, A., Wolkenberg, P., Aoki, S., Cardesínâ Moinelo, A., de la Marínâ Yaseli Parra, J., Merritt, D., & Amoroso, M. ( 2019 ). Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nature Geoscience, 12 ( 5 ), 326 â 332. https://doi.org/10.1038/s41561â 019â 0331â 9
dc.identifier.citedreferenceGough, R., Tolbert, M. A., McKay, C. P., & Toon, O. B. ( 2010 ). Methane adsorption on a Martian soil analog: An abiogenic explanation for methane variability in the Martian atmosphere. Icarus, 207 ( 1 ), 165 â 174. https://doi.org/10.1016/j.icarus.2009.11.030
dc.identifier.citedreferenceGrotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P. G., DesMarais, D., Farmer, J., Siebach, K., Calef, F., Hurowitz, J., McLennan, S. M., Ming, D., Vaniman, D., Crisp, J., Vasavada, A., Edgett, K. S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R. C., Maurice, S., Grant, J. A., Wilson, S., Anderson, R. C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R. S., Rice, M., Bell, J., Griffes, J., Ehlmann, B., Anderson, R. B., Bristow, T. F., Dietrich, W. E., Dromart, G., Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, S., Leshin, L. A., Leveille, R., Limonadi, D., Maki, J., McCloskey, S., Meyer, M., Minitti, M., Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres, S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R., Yingst, A., Team, M. S., Kemppinen, O., Bridges, N., Johnson, J. R., Cremers, D., Godber, A., Wadhwa, M., Wellington, D., McEwan, I., Newman, C., Richardson, M., Charpentier, A., Peret, L., King, P., Blank, J., Weigle, G., Li, S., Robertson, K., Sun, V., Baker, M., Edwards, C., Farley, K., Miller, H., Newcombe, M., Pilorget, C., Brunet, C., Hipkin, V., Leveille, R., Marchand, G., Sanchez, P. S., Favot, L., Cody, G., Fluckiger, L., Lees, D., Nefian, A., Martin, M., Gailhanou, M., Westall, F., Israel, G., Agard, C., Baroukh, J., Donny, C., Gaboriaud, A., Guillemot, P., Lafaille, V., Lorigny, E., Paillet, A., Perez, R., Saccoccio, M., Yana, C., Armiensâ Aparicio, C., Rodriguez, J. C., Blazquez, I. C., Gomez, F. G., Gomezâ Elvira, J., Hettrich, S., Malvitte, A. L., Jimenez, M. M., Martinezâ Frias, J., Martinâ Soler, J., Martinâ Torres, F. J., Jurado, A. M., Moraâ Sotomayor, L., Caro, G. M., Lopez, S. N., Peinadoâ Gonzalez, V., Plaâ Garcia, J., Manfredi, J. A. R., Romeralâ Planello, J. J., Fuentes, S. A. S., Martinez, E. S., Redondo, J. T., Urquiâ O’Callaghan, R., Mier, M. P. Z., Chipera, S., Lacour, J. L., Mauchien, P., Sirven, J. B., Manning, H., Fairen, A., Hayes, A., Joseph, J., Sullivan, R., Thomas, P., Dupont, A., Lundberg, A., Melikechi, N., Mezzacappa, A., DeMarines, J., Grinspoon, D., Reitz, G., Prats, B., Atlaskin, E., Genzer, M., Harri, A. M., Haukka, H., Kahanpaa, H., Kauhanen, J., Paton, M., Polkko, J., Schmidt, W., Siili, T., Fabre, C., Wray, J., Wilhelm, M. B., Poitrasson, F., Patel, K., Gorevan, S., Indyk, S., Paulsen, G., Bish, D., Gondet, B., Langevin, Y., Geffroy, C., Baratoux, D., Berger, G., Cros, A., d’Uston, C., Forni, O., Gasnault, O., Lasue, J., Lee, Q. M., Meslin, P. Y., Pallier, E., Parot, Y., Pinet, P., Schroder, S., Toplis, M., Lewin, E., Brunner, W., Heydari, E., Achilles, C., Sutter, B., Cabane, M., Coscia, D., Szopa, C., Robert, F., Sautter, V., le Mouelic, S., Nachon, M., Buch, A., Stalport, F., Coll, P., Francois, P., Raulin, F., Teinturier, S., Cameron, J., Clegg, S., Cousin, A., DeLapp, D., Dingler, R., Jackson, R. S., Johnstone, S., Lanza, N., Little, C., Nelson, T., Williams, R. B., Jones, A., Kirkland, L., Baker, B., Cantor, B., Caplinger, M., Davis, S., Duston, B., Fay, D., Harker, D., Herrera, P., Jensen, E., Kennedy, M. R., Krezoski, G., Krysak, D., Lipkaman, L., McCartney, E., McNair, S., Nixon, B., Posiolova, L., Ravine, M., Salamon, A., Saper, L., Stoiber, K., Supulver, K., van Beek, J., van Beek, T., Zimdar, R., French, K. L., Iagnemma, K., Miller, K., Goesmann, F., Goetz, W., Hviid, S., Johnson, M., Lefavor, M., Lyness, E., Breves, E., Dyar, M. D., Fassett, C., Edwards, L., Haberle, R., Hoehler, T., Hollingsworth, J., Kahre, M., Keely, L., McKay, C., Bleacher, L., Brinckerhoff, W., Choi, D., Dworkin, J. P., Floyd, M., Freissinet, C., Garvin, J., Glavin, D., Harpold, D., Martin, D. K., McAdam, A., Pavlov, A., Raaen, E., Smith, M. D., Stern, J., Tan, F., Trainer, M., Posner, A., Voytek, M., Aubrey, A., Behar, A., Blaney, D., Brinza, D., Christensen, L., DeFlores, L., Feldman, J., Feldman, S., Flesch, G., Jun, I., Keymeulen, D., Mischna, M., Morookian, J. M., Pavri, B., Schoppers, M., Sengstacken, A., Simmonds, J. J., Spanovich, N., Juarez, M... T., Webster, C. R., Yen, A., Archer, P. D., Cucinotta, F., Jones, J. H., Morris, R. V., Niles, P., Rampe, E., Nolan, T., Fisk, M., Radziemski, L., Barraclough, B., Bender, S., Berman, D., Dobrea, E. N., Tokar, R., Cleghorn, T., Huntress, W., Manhes, G., Hudgins, J., Olson, T., Stewart, N., Sarrazin, P., Vicenzi, E., Bullock, M., Ehresmann, B., Hamilton, V., Hassler, D., Peterson, J., Rafkin, S., Zeitlin, C., Fedosov, F., Golovin, D., Karpushkina, N., Kozyrev, A., Litvak, M., Malakhov, A., Mitrofanov, I., Mokrousov, M., Nikiforov, S., Prokhorov, V., Sanin, A., Tretyakov, V., Varenikov, A., Vostrukhin, A., Kuzmin, R., Clark, B., Wolff, M., Botta, O., Drake, D., Bean, K., Lemmon, M., Schwenzer, S. P., Lee, E. M., Sucharski, R., Hernandez, M. A.. P., Avalos, J. J. B., Ramos, M., Kim, M. H., Malespin, C., Plante, I., Muller, J. P., Navarroâ Gonzalez, R., Ewing, R., Boynton, W., Downs, R., Fitzgibbon, M., Harshman, K., Morrison, S., Kortmann, O., Williams, A., Lugmair, G., Wilson, M. A., Jakosky, B., Balicâ Zunic, T., Frydenvang, J., Jensen, J. K., Kinch, K., Koefoed, A., Madsen, M. B., Stipp, S. L. S., Boyd, N., Campbell, J. L., Perrett, G., Pradler, I., VanBommel, S., Jacob, S., Owen, T., Savijarvi, H., Boehm, E., Bottcher, S., Burmeister, S., Guo, J., Kohler, J., Garcia, C. M., Muellerâ Mellin, R., Wimmerâ Schweingruber, R., Bridges, J. C., McConnochie, T., Benna, M., Franz, H., Bower, H., Brunner, A., Blau, H., Boucher, T., Carmosino, M., Atreya, S., Elliott, H., Halleaux, D., Renno, N., Wong, M., Pepin, R., Elliott, B., Spray, J., Thompson, L., Gordon, S., Ollila, A., Williams, J., Vasconcelos, P., Bentz, J., Nealson, K., Popa, R., Moersch, J., Tate, C., Day, M., Francis, R., McCullough, E., Cloutis, E., ten Kate, I. L., Scholes, D., Slavney, S., Stein, T., Ward, J., Berger, J., & Moores, J. E. ( 2014 ). A habitable fluvioâ lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science, 343 ( 6169 ). https://doi.org/10.1126/science.1242777
dc.identifier.citedreferenceGuzewich, S. D., Newman, C. E., Smith, M. D., Moores, J. E., Smith, C. L., Moore, C., Richardson, M. I., Kass, D., Kleinböhl, A., Mischna, M., Martínâ Torres, F. J., Zorzanoâ Mier, M. P., & Battalio, M. ( 2017 ). The vertical dust profile over Gale Crater, Mars. Journal of Geophysical Research: Planets, 122, 2779 â 2792. https://doi.org/10.1002/2017JE005420
dc.identifier.citedreferenceHu, R., Bloom, A., Gao, P., Miller, C. E., & Yung, Y. L. ( 2016 ). Hypotheses for nearâ surface exchange of methane on Mars. Astrobiology, 16 ( 7 ), 539 â 550. https://doi.org/10.1089/ast.2015.1410
dc.identifier.citedreferenceJensen, S. J. K., Skibsted, J., Jakobsen, H. J., ten Kate, I. L., Gunnlaugsson, H. P., Merrison, J. P., Finster, K., Bak, E., Iversen, J. J., Kondrup, J. C., & Nørnberg, P. ( 2014 ). A sink for methane on Mars? The answer is blowing in the wind. Icarus, 236, 24 â 27. https://doi.org/10.1016/j.icarus.2014.03.036
dc.identifier.citedreferenceKorablev, O., Vandaele, A. C., Montmessin, F., Fedorova, A. A., Trokhimovskiy, A., Forget, F., Lefèvre, F., Daerden, F., Thomas, I. R., Trompet, L., Erwin, J. T., Aoki, S., Robert, S., Neary, L., Viscardy, S., Grigoriev, A. V., Ignatiev, N. I., Shakun, A., Patrakeev, A., Belyaev, D. A., Bertaux, J.â L., Olsen, K. S., Baggio, L., Alday, J., Ivanov, Y. S., Ristic, B., Mason, J., Willame, Y., Depiesse, C., Hetey, L., Berkenbosch, S., Clairquin, R., Queirolo, C., Beeckman, B., Neefs, E., Patel, M. R., Bellucci, G., Lópezâ Moreno, J.â J., Wilson, C. F., Etiope, G., Zelenyi, L., Svedhem, H., & Vago, J. L. ( 2019 ). No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 568 ( 7753 ), 517 â 520. https://doi.org/10.1038/s41586â 019â 1096â 4
dc.identifier.citedreferenceMahaffy, P. R., Webster, C. R., Cabane, M., Conrad, P. G., Coll, P., Atreya, S. K., Arvey, R., Barciniak, M., Benna, M., Bleacher, L., Brinckerhoff, W. B., Eigenbrode, J. L., Carignan, D., Cascia, M., Chalmers, R. A., Dworkin, J. P., Errigo, T., Everson, P., Franz, H., Farley, R., Feng, S., Frazier, G., Freissinet, C., Glavin, D. P., Harpold, D. N., Hawk, D., Holmes, V., Johnson, C. S., Jones, A., Jordan, P., Kellogg, J., Lewis, J., Lyness, E., Malespin, C. A., Martin, D. K., Maurer, J., McAdam, A. C., McLennan, D., Nolan, T. J., Noriega, M., Pavlov, A. A., Prats, B., Raaen, E., Sheinman, O., Sheppard, D., Smith, J., Stern, J. C., Tan, F., Trainer, M., Ming, D. W., Morris, R. V., Jones, J., Gundersen, C., Steele, A., Wray, J., Botta, O., Leshin, L. A., Owen, T., Battel, S., Jakosky, B. M., Manning, H., Squyres, S., Navarroâ González, R., McKay, C. P., Raulin, F., Sternberg, R., Buch, A., Sorensen, P., Klineâ Schoder, R., Coscia, D., Szopa, C., Teinturier, S., Baffes, C., Feldman, J., Flesch, G., Forouhar, S., Garcia, R., Keymeulen, D., Woodward, S., Block, B. P., Arnett, K., Miller, R., Edmonson, C., Gorevan, S., & Mumm, E. ( 2012 ). The sample analysis at Mars investigation and instrument suite. Space Sci. Rev., 170 ( 1â 4 ), 401 â 478. https://doi.org/10.1007/s11214â 012â 9879â z
dc.identifier.citedreferenceMartínez, G. M., Newman, C. N., de Vicenteâ Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., Fairén, A. G., Genzer, M., Guzewich, S. D., Haberle, R. M., Harri, A. M., Kemppinen, O., Lemmon, M. T., Smith, M. D., de la Torreâ Juárez, M., & Vasavada, A. R. ( 2017 ). The modern nearâ surface Martian climate: A review of inâ situ meteorological data from Viking to Curiosity. Space Science Reviews, 212 ( 1â 2 ), 295 â 338. https://doi.org/10.1007/s11214â 017â 0360â x
dc.identifier.citedreferenceMeslin, P.â Y., Gough, R., Lefèvre, F., & Forget, F. ( 2011 ). Little variability of methane on Mars induced by adsorption in the regolith. Planetary and Space Science, 59 ( 2â 3 ), 247 â 258. https://doi.org/10.1016/j.pss2010.09.022
dc.identifier.citedreferenceMoores, J. E., Gough, R. V., Martinez, G. M., Meslin, P.â Y., Smith, C. L., Atreya, S. K., Mahaffy, P. R., Newman, C. E., & Webster, C. R. ( 2019 ). Methane seasonal cycle at Gale Crater on Mars consistent with regolith adsorption and diffusion. Nature Geoscience, 12 ( 5 ), 321 â 325. https://doi.org/10.1038/s41561â 019â 0313â y
dc.identifier.citedreferenceMoores, J. E., Schieber, J., Kling, A. M., Haberle, R. M., Moore, C. A., Anderson, M. S., Katz, I., Yavrouian, A., Malin, M. C., Olson, T., Rafkin, S. C. R., Lemmon, M. T., Sullivan, R. J., Comeaux, K., & Vasavada, A. R. ( 2016 ). Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid. Advances in Space Research, 58 ( 6 ), 1066 â 1092. https://doi.org/10.1016/j.asr.2016.05.051
dc.identifier.citedreferenceMoores, J. E., Smith, C. L., & Schuerger, A. C. ( 2017 ). UV production of methane from surface and sedimenting IDPs on Mars in the light of REMS and with insights for TGO. Planetary and Space Science, 147, 48 â 60. https://doi.org/10.1016/j.pss.2017.09.008
dc.identifier.citedreferenceNewman, C. E., Gómezâ Elvira, J., Marin, M., Navarro, S., Torres, J., Richardson, M. I., Battalio, J. M., Guzewich, S. D., Sullivan, R., Torre, M..., Vasavada, A. R., & Bridges, N. T. ( 2017 ). Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover’s Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus, 291, 203 â 231. https://doi.org/10.1016/j.icarus.2016.12.016
dc.identifier.citedreferenceOehler, D. Z., & Etiope, G. ( 2017 ). Methane seepage on Mars: Where to look and why. Astrobiology, 17 ( 12 ), 1233 â 1264. https://doi.org/10.1089/ast.2017.1657
dc.identifier.citedreferencePathak, J., Michaelangeli, D. V., Komguem, L., Whiteway, J., & Tamppari, L. K. ( 2008 ). Simulating Martian boundary layer water ice clouds and the lidar measurements for the Phoenix mission. Journal of Geophysical Research, 113, E00A05. https://doi.org/10.1029/2007JE002967
dc.identifier.citedreferencePress, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. ( 1997 ). Numerical Recipes in C: The art of scientific computing, ( 2nd ed.). New York, NY: Cambridge University Press.
dc.identifier.citedreferenceRafkin, S. C. R., Plaâ Garcia, J., Kahre, M., Gomezâ Elvira, J., Hamilton, V. E., Marín, M., Navarro, S., Torres, J., & Vasavada, A. ( 2016 ). The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation. Icarus, 280, 114 â 138. https://doi.org/10.1016/j.icarus.2016.01.031
dc.identifier.citedreferenceSavijarvi, H. I., Harri, A.â M., & Kemppinen, O. ( 2015 ). Mars science laboratory diurnal moisture observations and column simulations. Journal of Geophysical Research: Planets, 120, 1011 â 1021. https://doi.org/10.1002/2014JE004732
dc.identifier.citedreferenceTaylor, P. A., Li, P.â Y., Michelangeli, D. V., Pathak, J., & Weng, W. ( 2007 ). Modelling dust distributions in the atmospheric boundary layer on Mars. Boundaryâ Layer Meteorology, 125 ( 2 ), 305 â 328. https://doi.org/10.1007/s10546â 007â 9158â 9
dc.identifier.citedreferenceWaugh, D. W., Toigo, A. D., & Guzewich, S. D. ( 2019 ). Age of Martian air: Time scales for Martian atmospheric transport. Icarus, 317, 148 â 157. https://doi.org/10.1016/j.icarus.2018.08.002
dc.identifier.citedreferenceWebster, C. R., Mahaffy, P. R., Atreya, S. K., Flesch, G. J., Farley, K. A., & MSL Science Team ( 2013 ). Low Upper Limit to Methane Abundance on Mars. Science, 342, 355 â 357.
dc.identifier.citedreferenceWebster, C. R., Mahaffy, P. R., Atreya, S. K., Flesch, G. J., Mischna, M. A., Meslin, P. Y., Farley, K. A., Conrad, P. G., Christensen, L. E., Pavlov, A. A., Martinâ Torres, J., Zorzano, M. P., McConnochie, T. H., Owen, T., Eigenbrode, J. L., Glavin, D. P., Steele, A., Malespin, C. A., Archer, P. D., Sutter, B., Coll, P., Freissinet, C., McKay, C. P., Moores, J. E., Schwenzer, S. P., Bridges, J. C., Navarroâ Gonzalez, R., Gellert, R., Lemmon, M. T., & the MSL Science Team ( 2015 ). Mars methane detection and variability at Gale crater. Science, 347 ( 6220 ), 415 â 417. https://doi.org/10.1126/science.1261713
dc.identifier.citedreferenceWebster, C. R., Mahaffy, P. R., Atreya, S. K., Moores, J. E., Flesch, G. J., Malespin, C., McKay, C. P., Martinez, G., Smith, C. L., Martinâ Torres, J., Gomezâ Elvira, J., Zorzano, M. P., Wong, M. H., Trainer, M. G., Steele, A., Archer, D. Jr., Sutter, B., Coll, P. J., Freissinet, C., Meslin, P. Y., Gough, R. V., House, C. H., Pavlov, A., Eigenbrode, J. L., Glavin, D. P., Pearson, J. C., Keymeulen, D., Christensen, L. E., Schwenzer, S. P., Navarroâ Gonzalez, R., Plaâ García, J., Rafkin, S. C. R., Vicenteâ Retortillo, à ., Kahanpää, H., Viudezâ Moreiras, D., Smith, M. D., Harri, A. M., Genzer, M., Hassler, D. M., Lemmon, M., Crisp, J., Sander, S. P., Zurek, R. W., & Vasavada, A. R. ( 2018 ). Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science, 360 ( 6393 ), 1093 â 1096. https://doi.org/10.1126/science.aaq0131
dc.identifier.citedreferenceAtreya, S. K., Mahaffy, P. R., & Wong, A.â S. ( 2007 ). Methane and related species on Mars: Origin, loss, implications for life and habitability. Planetary Space Science, 55 ( 3 ), 358 â 369. https://doi.org/10.1016/j.pss.2006.02.005
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.