Show simple item record

Hollow Notched K‐Wires for Bone Drilling With Through‐Tool Cooling

dc.contributor.authorLuo, Yuanqiang
dc.contributor.authorChen, Lei
dc.contributor.authorShih, Albert J.
dc.date.accessioned2019-10-30T15:30:03Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-10-30T15:30:03Z
dc.date.issued2019-11
dc.identifier.citationLuo, Yuanqiang; Chen, Lei; Shih, Albert J. (2019). "Hollow Notched K‐Wires for Bone Drilling With Through‐Tool Cooling." Journal of Orthopaedic Research® 37(11): 2297-2306.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/151842
dc.description.abstractKirschner wire (K‐wire) is a common tool in clinical orthopedic surgery for bone fracture fixation. A significant amount of heat is generated in bone drilling using K‐wires, causing bone thermal necrosis and osteonecrosis. To minimize the temperature rise, a hollow notched K‐wire in a modified surgical hand drill with through‐tool cooling was developed to study the bone temperature, debris evacuation, and material removal rate. The hollow notched K‐wire was fabricated by grinding and micro‐milling on a stainless steel tube. Bone drilling tests were conducted to evaluate its performance against the solid K‐wires. Results showed that compared with solid K‐wires, hollow notched K‐wire drilling without cooling reduced the peak bone temperature rise, thrust force, and torque by 42%, 59%, and 62% correspondingly. The through‐tool compressed air reduced the peak bone temperature rise by 48% with the forced air convection and better debris evacuation. The through‐tool water cooling decreased the bone temperature by only 26% due to accumulation and blockage of bone debris in the groove and channel. This study demonstrated the benefit of using the hollow notched K‐wire with through‐tool compressed air to prevent the bone thermal necrosis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2297–2306, 2019
dc.publisherJohn Wiley & Sons
dc.subject.otherair cooling
dc.subject.otherthrough‐tool cooling
dc.subject.otherbone drilling
dc.subject.otherbone temperature
dc.subject.otherhollow notched K‐wire
dc.titleHollow Notched K‐Wires for Bone Drilling With Through‐Tool Cooling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151842/1/jor24419.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151842/2/jor24419_am.pdf
dc.identifier.doi10.1002/jor.24419
dc.identifier.sourceJournal of Orthopaedic Research®
dc.identifier.citedreferenceShakouri E, Haghighi Hassanalideh H, Gholampour S. 2018. Experimental investigation of temperature rise in bone drilling with cooling: a comparison between modes of without cooling, internal gas cooling, and external liquid cooling. Proc Inst Mech Eng Part H J Eng Med 232: 45 – 53.
dc.identifier.citedreferenceTai BL, Palmisano AC, Belmont B, et al. 2015. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys 37: 855 – 861.
dc.identifier.citedreferenceEriksson AR, Albrektsson T. 1983. Temperature threshold levels for heat‐induced bone tissue injury: a vital‐microscopic study in the rabbit. J Prosthet Dent 50: 101 – 107.
dc.identifier.citedreferenceField JR, Sumner‐Smith G. 2002. Bone blood flow response to surgical trauma. Injury 33: 447 – 451.
dc.identifier.citedreferenceKhanna A, Plessas SJ, Barrett P, et al. 1999. The thermal effects of Kirschner wire fixation on small bones. J Hand Surg Am 24: 355 – 357.
dc.identifier.citedreferenceKirschner M. 1909. Ueber nagelextension. Beitr Klin Chir 64: 266 – 279.
dc.identifier.citedreferenceNamba RS, Kabo JM, Meals RA, et al. 1987. Biomechanical effects of point configuration in Kirschner‐wire fixation. Clin Orthop Relat Res 214: 19 – 22.
dc.identifier.citedreferenceGraebe A, Tsenter M, Kabo JM, et al. 1992. Biomechanical effects of a new point configuration and a modified cross‐sectional configuration in Kirschner‐wire fixation. Clin Orthop Relat Res 283: 292 – 295.
dc.identifier.citedreferenceBelmont B, Li W, Shih A, et al. 2014. Micromilling surface patterns for enhanced Kirschner wire bone drilling. IWMF 2014, 9th International Work Microfactories 5. p 75 – 79.
dc.identifier.citedreferenceLiu Y, Belmont B, Wang Y, et al. 2017. Notched K‐wire for low thermal damage bone drilling. Med Eng Phys 45: 25 – 33.
dc.identifier.citedreferencePiska M, Yang L, Reed M, et al. 2002. Drilling efficiency and temperature elevation of three types of Kirschner‐wire point. J Bone Joint Surg Br 84: 137 – 140.
dc.identifier.citedreferenceHutchinson DT, Bachus KN, Higgenbotham T. 2000. External fixation of the distal radius: to predrill or not to predrill. J Hand Surg Am 25: 1064 – 1068.
dc.identifier.citedreferenceLuo Y, Chen L, Finney FT, et al. 2019. Evaluation of heat generation in unidirectional versus oscillatory modes during K‐wire insertion in bone. J Orthop Res https://doi.org/10.1002/jor.24345
dc.identifier.citedreferenceToksvig‐Larsen S, Ryd L, Lindstrand A. 1990. An internally cooled saw blade for bone cuts: lower temperatures in 30 knee arthroplasties. Acta Orthop Scand 61: 321 – 323.
dc.identifier.citedreferenceAugustin G, Davila S, Udilljak T, et al. 2012. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop 36: 1449 – 1456.
dc.identifier.citedreferenceBrand S, Klotz J, Petri M, et al. 2013. Temperature control with internally applied cooling in solid material drilling: an experimental, biomechanical study. Int Orthop 37: 1355 – 1361.
dc.identifier.citedreferenceFranssen BBGM, Van diest PJ, Schuurman AH, et al. 2008. Drilling K‐wires, what about the osteocytes? An experimental study in rabbits. Arch Orthop Trauma Surg 128: 83 – 87.
dc.identifier.citedreferenceMeriam JL, Kraige LG. 2012. Engineering mechanics volume 2: dynamics, 7th ed. New York, NY: John Wiley & Sons.
dc.identifier.citedreferenceKaraca F, Aksakal B. 2013. Effects of various drilling parameters on bone during implantology: an in vitro experimental study. Acta Bioengi Biomech 15: 25 – 32.
dc.identifier.citedreferencePalmisano AC, Tai BL, Belmont B, et al. 2015. Comparison of cortical bone drilling induced heat production among common drilling tools. J Orthop Trauma 29: e188 – e193.
dc.identifier.citedreferenceEsen H, Yano K, Buss M, et al. 2003. A control algorithm and preliminary user studies for a bone drilling medical training system. In: 12th IEEE Workshop Robot and Human Interactive Communication (ROMAN), San Francisco, USA. p 153 – 158.
dc.identifier.citedreferenceSchmidt AO, Roubik JR. 1949. Distribution of heat generated in drilling. Trans ASME 71: 242 – 245.
dc.identifier.citedreferenceKomanduri R, Hou ZB. 2001. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34: 653 – 682.
dc.identifier.citedreferenceStrohm PC, Müller CA, Boll T, Pfister U. 2004. Two procedures for Kirschner wire osteosynthesis of distal radial fractures: a randomized trial. J Bone Joint Surg Am 86: 2621 – 2628.
dc.identifier.citedreferenceWalton NP, Brammar TJ, Hutchinson J, et al. 2001. Treatment of unstable distal radial fractures by intrafocal, intramedullary K‐wires. Injury 32: 383 – 389.
dc.identifier.citedreferenceOtsuka NY, Kasser JR. 1997. Supracondylar fractures of the humerus in children. J Am Acad Orthop Surg 5: 19 – 26.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.