Show simple item record

Suppression of Notch Signaling in Osteoclasts Improves Bone Regeneration and Healing

dc.contributor.authorGoel, Peeyush N.
dc.contributor.authorMoharrer, Yasaman
dc.contributor.authorHebb, John H.
dc.contributor.authorEgol, Alexander J.
dc.contributor.authorKaur, Gurpreet
dc.contributor.authorHankenson, Kurt D.
dc.contributor.authorAhn, Jaimo
dc.contributor.authorAshley, Jason W.
dc.date.accessioned2019-10-30T15:30:09Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-10-30T15:30:09Z
dc.date.issued2019-10
dc.identifier.citationGoel, Peeyush N.; Moharrer, Yasaman; Hebb, John H.; Egol, Alexander J.; Kaur, Gurpreet; Hankenson, Kurt D.; Ahn, Jaimo; Ashley, Jason W. (2019). "Suppression of Notch Signaling in Osteoclasts Improves Bone Regeneration and Healing." Journal of Orthopaedic Research® 37(10): 2089-2103.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/151846
dc.description.abstractOwing to the central role of osteoclasts in bone physiology and remodeling, manipulation of their maturation process provides a potential therapeutic strategy for treating bone diseases. To investigate this, we genetically inhibited the Notch signaling pathway in the myeloid lineage, which includes osteoclast precursors, using a dominant negative form of MAML (dnMAML) that inhibits the transcriptional complex required for downstream Notch signaling. Osteoclasts derived from dnMAML mice showed no significant differences in early osteoclastic gene expression compared to the wild type. Further, these demonstrated significantly lowered resorption activity using bone surfaces while retaining their osteoblast stimulating ability using ex vivo techniques. Using in vivo approaches, we detected significantly higher bone formation rates and osteoblast gene expression in dnMAML cohorts. Further, these mice exhibited increased bone/tissue mineral density compared to wild type and larger bony calluses in later stages of fracture healing. These observations suggest that therapeutic suppression of osteoclast Notch signaling could reduce, but not eliminate, osteoclastic resorption without suppression of restorative bone remodeling and, therefore, presents a balanced paradigm for increasing bone formation, regeneration, and healing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2089–2103, 2019
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfracture healing
dc.subject.otherNotch signaling
dc.subject.otherosteoblasts
dc.subject.otherbone formation
dc.subject.otherregeneration
dc.subject.otherosteoclasts
dc.titleSuppression of Notch Signaling in Osteoclasts Improves Bone Regeneration and Healing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151846/1/jor24384.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151846/2/jor24384_am.pdf
dc.identifier.doi10.1002/jor.24384
dc.identifier.sourceJournal of Orthopaedic Research®
dc.identifier.citedreferenceRentsch C, Schneiders W, Manthey S et al. 2014. Comprehensive histological evaluation of bone implants. Biomatter 4: 4.
dc.identifier.citedreferenceQi B, Cong Q, Li P et al. 2014. Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice. Sci Rep 4: 7158.
dc.identifier.citedreferenceStemig M, Astelford K, Emery A et al. 2015. Deletion of histone deacetylase 7 in osteoclasts decreases bone mass in mice by interactions with MITF. PLoS ONE 10: e0123843.
dc.identifier.citedreferenceKaur G, Ahn J, Hankenson KD et al. 2017. Stimulation of notch signaling in mouse osteoclast precursors. J Vis Exp 120
dc.identifier.citedreferenceVesprey A, Yang W. 2016. Pit assay to measure the bone resorptive activity of bone marrow‐derived osteoclasts. Bio Protoc 6: 6.
dc.identifier.citedreferenceMerrild DM, Pirapaharan DC, Andreasen CM et al. 2015. Pit‐ and trench‐forming osteoclasts: a distinction that matters. Bone Res 3: 15032.
dc.identifier.citedreferencePanwar P, Soe K, Guido RV et al. 2016. A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br J Pharmacol 173: 396 – 410.
dc.identifier.citedreferenceBoissy P, Andersen TL, Abdallah BM et al. 2005. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res 65: 9943 – 9952.
dc.identifier.citedreferenceSoe K, Andersen TL, Hobolt‐Pedersen AS et al. 2011. Involvement of human endogenous retroviral syncytin‐1 in human osteoclast fusion. Bone 48: 837 – 846.
dc.identifier.citedreferenceSrivastava AK, Bhattacharyya S, Castillo G et al. 2000. Development and evaluation of C‐telopeptide enzyme‐linked immunoassay for measurement of bone resorption in mouse serum. Bone 27: 529 – 533.
dc.identifier.citedreferenceGreenblatt MB, Tsai JN, Wein MN. 2017. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63: 464 – 474.
dc.identifier.citedreferenceLi LJ, Kim SN, Cho SA. 2016. Comparison of alkaline phosphatase activity of MC3T3‐E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid‐etched (MSLA), laser‐treated, and laser and acid‐treated Ti surfaces. J Adv Prosthodont 8: 235 – 240.
dc.identifier.citedreferenceKnight MN, Karuppaiah K, Lowe M et al. 2018. R‐spondin‐2 is a Wnt agonist that regulates osteoblast activity and bone mass. Bone Res 6: 24.
dc.identifier.citedreferenceGruber HE. 1992. Adaptations of Goldner’s Masson trichrome stain for the study of undecalcified plastic embedded bone. Biotech Histochem 67: 30 – 34.
dc.identifier.citedreferenceZondervan RL, Vorce M, Servadio N. 2018. Fracture apparatus design and protocol optimization for closed‐stabilized fractures in Rodents. J Vis Exp 138
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA et al. 2010. Guidelines for assessment of bone microstructure in rodents using micro‐computed tomography. J Bone Miner Res 25: 1468 – 1486.
dc.identifier.citedreferencede Bakker CM, Altman AR, Tseng WJ et al. 2015. muCT‐based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy. Bone 73: 198 – 207.
dc.identifier.citedreferenceO’Neill KR, Stutz CM, Mignemi NA et al. 2012. Micro‐computed tomography assessment of the progression of fracture healing in mice. Bone 50: 1357 – 1367.
dc.identifier.citedreferenceMorgan EF, Mason ZD, Chien KB et al. 2009. Micro‐computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 44: 335 – 344.
dc.identifier.citedreferenceKahveci Z, Minbay FZ, Cavusoglu L. 2000. Safranin O staining using a microwave oven. Biotech Histochem 75: 264 – 268.
dc.identifier.citedreferenceTran D, Golick M, Rabinovitz H et al. 2000. Hematoxylin and safranin O staining of frozen sections. Dermatol Surg 26: 197 – 199.
dc.identifier.citedreferenceCamplejohn KL, Allard SA. 1988. Limitations of safranin “O” staining in proteoglycan‐depleted cartilage demonstrated with monoclonal antibodies. Histochemistry 89: 185 – 188.
dc.identifier.citedreferenceDishowitz MI, Mutyaba PL, Takacs JD et al. 2013. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS ONE 8: e68726.
dc.identifier.citedreferenceDelos D, Yang X, Ricciardi BF et al. 2008. The effects of RANKL inhibition on fracture healing and bone strength in a mouse model of osteogenesis imperfecta. J Orthop Res 26: 153 – 164.
dc.identifier.citedreferenceKates SL, Ackert‐Bicknell CL. 2016. How do bisphosphonates affect fracture healing? Injury 47: S65 – S68.
dc.identifier.citedreferenceXue D, Li F, Chen G et al. 2014. Do bisphosphonates affect bone healing? A meta‐analysis of randomized controlled trials. J Orthop Surg Res 9: 45.
dc.identifier.citedreferenceRasmusson L, Abtahi J. 2014. Bisphosphonate associated osteonecrosis of the jaw: an update on pathophysiology, risk factors, and treatment. Int J Dent 2014: 471035 – 471039.
dc.identifier.citedreferenceSellmeyer DE. 2010. Atypical fractures as a potential complication of long‐term bisphosphonate therapy. JAMA 304: 1480 – 1484.
dc.identifier.citedreferenceBahney CS, Zondervan RL, Allison P et al. 2019. Cellular biology of fracture healing. J Orthop Res 37: 35 – 50.
dc.identifier.citedreferenceSchell H, Lienau J, Epari DR et al. 2006. Osteoclastic activity begins early and increases over the course of bone healing. Bone 38: 547 – 554.
dc.identifier.citedreferenceTakeyama K, Chatani M, Takano Y et al. 2014. In‐vivo imaging of the fracture healing in medaka revealed two types of osteoclasts before and after the callus formation by osteoblasts. Dev Biol 394: 292 – 304.
dc.identifier.citedreferenceBeraldi R, Masi L, Parri S et al. 2014. The role of the orthopaedic surgeon in the prevention of refracture in patients treated surgically for fragility hip and vertebral fracture. Clin Cases Miner Bone Metab 11: 31 – 35.
dc.identifier.citedreferenceHobby B, Lee MA. 2013. Managing atrophic nonunion in the geriatric population: incidence, distribution, and causes. Orthop Clin North Am 44: 251 – 256.
dc.identifier.citedreferenceSibai T, Morgan EF, Einhorn TA. 2011. Anabolic agents and bone quality. Clin Orthop Relat Res 469: 2215 – 2224.
dc.identifier.citedreferenceDimitriou R, Jones E, McGonagle D et al. 2011. Bone regeneration: current concepts and future directions. BMC Med 9: 66.
dc.identifier.citedreferenceGiannotti S, Bottai V, Dell’osso G et al. 2013. Current medical treatment strategies concerning fracture healing. Clin Cases Miner Bone Metab 10: 116 – 120.
dc.identifier.citedreferenceKostenuik P, Mirza FM. 2017. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res 35: 213 – 223.
dc.identifier.citedreferenceLevaot N, Ottolenghi A, Mann M et al. 2015. Osteoclast fusion is initiated by a small subset of RANKL‐stimulated monocyte progenitors, which can fuse to RANKL‐unstimulated progenitors. Bone 79: 21 – 28.
dc.identifier.citedreferenceSoe K, Hobolt‐Pedersen AS, Delaisse JM. 2015. The elementary fusion modalities of osteoclasts. Bone 73: 181 – 189.
dc.identifier.citedreferenceHenriksen K, Karsdal MA, Martin TJ. 2014. Osteoclast‐derived coupling factors in bone remodeling. Calcified Tissue Int 94: 88 – 97.
dc.identifier.citedreferenceKarsdal MA, Martin TJ, Bollerslev J et al. 2007. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 22: 487 – 494.
dc.identifier.citedreferenceOta K, Quint P, Ruan M et al. 2013. TGF‐beta induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology 154: 3745 – 3752.
dc.identifier.citedreferencePederson L, Ruan M, Westendorf JJ et al. 2008. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine‐1‐phosphate. Proc Natl Acad Sci USA 105: 20764 – 20769.
dc.identifier.citedreferenceTeitelbaum SL. 2016. Therapeutic implications of suppressing osteoclast formation versus function. Rheumatology (Oxford) 55: ii61 – ii63.
dc.identifier.citedreferenceBai S, Kopan R, Zou W et al. 2008. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283: 6509 – 6518.
dc.identifier.citedreferenceFukushima H, Nakao A, Okamoto F et al. 2008. The association of Notch2 and NF‐kappaB accelerates RANKL‐induced osteoclastogenesis. Mol Cell Biol 28: 6402 – 6412.
dc.identifier.citedreferenceSekine C, Koyanagi A, Koyama N et al. 2012. Differential regulation of osteoclastogenesis by Notch2/Delta‐like 1 and Notch1/Jagged1 axes. Arthritis Res Ther 14: R45.
dc.identifier.citedreferenceYamada T, Yamazaki H, Yamane T et al. 2003. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101: 2227 – 2234.
dc.identifier.citedreferenceAshley JW, Ahn J, Hankenson KD. 2015. Notch signaling promotes osteoclast maturation and resorptive activity. J Cell Biochem 116: 2598 – 2609.
dc.identifier.citedreferenceKitagawa M. 2016. Notch signalling in the nucleus: roles of Mastermind‐like (MAML) transcriptional coactivators. J Biochem 159: 287 – 294.
dc.identifier.citedreferenceMcElhinny AS, Li JL, Wu L. 2008. Mastermind‐like transcriptional co‐activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27: 5138 – 5147.
dc.identifier.citedreferenceAndersson ER, Sandberg R, Lendahl U. 2011. Notch signaling: simplicity in design, versatility in function. Development 138: 3593 – 3612.
dc.identifier.citedreferenceMaillard I, Tu L, Sambandam A et al. 2006. The requirement for Notch signaling at the beta‐selection checkpoint in vivo is absolute and independent of the pre‐T cell receptor. J Exp Med 203: 2239 – 2245.
dc.identifier.citedreferenceClausen BE, Burkhardt C, Reith W et al. 1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8: 265 – 277.
dc.identifier.citedreferenceCroke M, Ross FP, Korhonen M et al. 2011. Rac deletion in osteoclasts causes severe osteopetrosis. J Cell Sci 124: 3811 – 3821.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.