Show simple item record

On the Optimal Design of Wall‐to‐Wall Heat Transport

dc.contributor.authorDoering, Charles R.
dc.contributor.authorTobasco, Ian
dc.date.accessioned2019-10-30T15:30:21Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-10-30T15:30:21Z
dc.date.issued2019-11
dc.identifier.citationDoering, Charles R.; Tobasco, Ian (2019). "On the Optimal Design of Wall‐to‐Wall Heat Transport." Communications on Pure and Applied Mathematics 72(11): 2385-2448.
dc.identifier.issn0010-3640
dc.identifier.issn1097-0312
dc.identifier.urihttps://hdl.handle.net/2027.42/151852
dc.description.abstractWe consider the problem of optimizing heat transport through an incompressible fluid layer. Modeling passive scalar transport by advection‐diffusion, we maximize the mean rate of total transport by a divergence‐free velocity field. Subject to various boundary conditions and intensity constraints, we prove that the maximal rate of transport scales linearly in the r.m.s. kinetic energy and, up to possible logarithmic corrections, as the one‐third power of the mean enstrophy in the advective regime. This makes rigorous a previous prediction on the near optimality of convection rolls for energy‐constrained transport. On the other hand, optimal designs for enstrophy‐constrained transport are significantly more difficult to describe: we introduce a “branching” flow design with an unbounded number of degrees of freedom and prove it achieves nearly optimal transport. The main technical tool behind these results is a variational principle for evaluating the transport of candidate designs. The principle admits dual formulations for bounding transport from above and below. While the upper bound is closely related to the “background method,” the lower bound reveals a connection between the optimal design problems considered herein and other apparently related model problems from mathematical materials science. These connections serve to motivate designs. © 2019 Wiley Periodicals, Inc.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.titleOn the Optimal Design of Wall‐to‐Wall Heat Transport
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151852/1/cpa21832.pdf
dc.identifier.doi10.1002/cpa.21832
dc.identifier.sourceCommunications on Pure and Applied Mathematics
dc.identifier.citedreferenceRayleigh, L. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32 ( 1916 ), 529 – 546.
dc.identifier.citedreferenceNobili, C.; Otto, F. Limitations of the background field method applied to Rayleigh-Bénard convection. J. Math. Phys. 58 ( 2017 ), no. 9, 093102, 46 pp. doi: 10.1063/1.5002559
dc.identifier.citedreferenceOrtiz, M. A variational formulation for convection-diffusion problems. Internat. J. Engrg. Sci. 23 ( 1985 ), no. 7, 717 – 731. doi: 10.1016/0020-7225(85)90004-7
dc.identifier.citedreferenceOrtiz, M.; Gioia, G. The morphology and folding patterns of buckling-driven thin-film blisters. J. Mech. Phys. Solids 42 ( 1994 ), no. 3, 531 – 559. doi: 10.1016/0022-5096(94)90030-2
dc.identifier.citedreferenceOtero, J.; Dontcheva, L. A.; Johnston, H.; Worthing, R. A.; Kurganov, A.; Petrova, G.; Doering, C. R. High-Rayleigh-number convection in a fluid-saturated porous layer. J. Fluid Mech. 500 ( 2004 ), 263 – 281. doi: 10.1017/S0022112003007298
dc.identifier.citedreferenceOtto, F.; Seis, C. Rayleigh–Bénard convection: improved bounds on the Nusselt number. J. Math. Phys. 52 ( 2011 ), no. 8, 083702, 24 pp. doi: 10.1063/1.3623417
dc.identifier.citedreferencePakzad, M. R. On the Sobolev space of isometric immersions. J. Differential Geom. 66 ( 2004 ), no. 1, 47 – 69.
dc.identifier.citedreferencePlasting, S. C.; Kerswell, R. R. Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse’s problem and the Constantin-Doering-Hopf problem with one-dimensional background field. J. Fluid Mech. 477 ( 2003 ), 363 – 379. doi: 10.1017/S0022112002003361
dc.identifier.citedreferenceSeis, C. Scaling bounds on dissipation in turbulent flows. J. Fluid. Mech. 777 ( 2015 ), 591 – 603.
dc.identifier.citedreferenceSondak, D.; Smith, L. M.; Waleffe, F. Optimal heat transport solutions for Rayleigh-Bénard convection. J. Fluid Mech. 784 ( 2015 ), 565 – 595. doi: 10.1017/jfm.2015.615
dc.identifier.citedreferenceSouza, A. N. An optimal control approach to bounding transport properties of thermal convection. Ph.D. thesis, University of Michigan, 2016.
dc.identifier.citedreferenceTobasco, I.; Doering, C. R. Optimal wall-to-wall transport by incompressible flows. Phys. Rev. Lett. 118 ( 2017 ), 264502. doi: 10.1103/PhysRevLett.118.264502
dc.identifier.citedreferenceTobasco, I.; Goluskin, D.; Doering, C. R. Optimal bounds and extremal trajectories for time averages in nonlinear dynamical systems. Phys. Lett. A 382 ( 2018 ), no. 6, 382 – 386. doi: 10.1016/j.physleta.2017.12.023
dc.identifier.citedreferenceWaleffe, F.; Boonkasame, A.; Smith, L. M. Heat transport by coherent Rayleigh-Bénard convection. Physics of Fluids 27 ( 2015 ), no. 5, 051702. doi: 10.1063/1.4919930
dc.identifier.citedreferenceWen, B.; Corson, L. T.; Chini, G. P. Structure and stability of steady porous medium convection at large Rayleigh number. J. Fluid Mech. 772 ( 2015 ), 197 – 224. doi: 10.1017/jfm.2015.205
dc.identifier.citedreferenceWhitehead, J. P.; Doering, C. R. Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 ( 2011 ), 244501. doi: 10.1103/PhysRevLett.106.244501
dc.identifier.citedreferenceYan, X. On limits to convective heat transport at infinite Prandtl number with or without rotation. J. Math. Phys. 45 ( 2004 ), no. 7, 2718 – 2743. doi: 10.1063/1.1763246
dc.identifier.citedreferenceHoward, L. N. Heat transport by turbulent convection. J. Fluid. Mech. 17 ( 1963 ), no. 3, 405 – 432. doi: 10.1017/S0022112063001427
dc.identifier.citedreferenceAlben, S. Improved convection cooling in steady channel flows. Phys. Rev. Fluids 2 ( 2017 ), 104501. doi: 10.1103/PhysRevFluids.2.104501
dc.identifier.citedreferenceAvellaneda, M.; Majda, A. J. An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Comm. Math. Phys. 138 ( 1991 ), no. 2, 339 – 391.
dc.identifier.citedreferenceBen Belgacem, H.; Conti, S.; DeSimone, A.; Müller, S. Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10 ( 2000 ), no. 6, 661 – 683. doi: 10.1007/s003320010007
dc.identifier.citedreferenceBraides, A. Γ-convergence for beginners. Oxford Lecture Series in Mathematics and Its Applications, 22. Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
dc.identifier.citedreferenceBusse, F. H. On Howard’s upper bound for heat transport by turbulent convection. J. Fluid. Mech. 37 ( 1969 ), no. 3, 457 – 477. doi: 10.1017/S0022112069000668
dc.identifier.citedreferenceChernyshenko, S. Relationship between the methods of bounding time averages. Preprint, 2017. arxiv: 1704.02475 [physics.flu-dyn]
dc.identifier.citedreferenceChernyshenko, S. I.; Goulart, P.; Huang, D.; Papachristodoulou, A. Polynomial sum of squares in fluid dynamics: a review with a look ahead. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 ( 2014 ), no. 2020, 20130350, 18 pp. doi: 10.1098/rsta.2013.0350
dc.identifier.citedreferenceChoksi, R.; Kohn, R. V. Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 51 ( 1998 ), no. 3, 259 – 289. doi: 10.1002/(SICI)1097-0312(199803)51:3 < 259::AID-CPA3 > 3.0.CO;2-9
dc.identifier.citedreferenceChoksi, R.; Kohn, R. V.; Otto, F. Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201 ( 1999 ), no. 1, 61 – 79. doi: 10.1007/s002200050549
dc.identifier.citedreferenceCinti, E.; Otto, F. Interpolation inequalities in pattern formation. J. Funct. Anal. 271 ( 2016 ), no. 11, 3348 – 3392. doi: 10.1016/j.jfa.2016.05.007
dc.identifier.citedreferenceConstantin, P.; Doering, C. R. Variational bounds on energy dissipation in incompressible flows. II. Channel flow. Phys. Rev. E (3) 51 ( 1995 ), no. 4, part A, 3192–3198. doi: 10.1103/PhysRevE.51.3192
dc.identifier.citedreferenceDoering, C. R.; Constantin, P. Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E (3) 49 ( 1994 ), no. 5, part A, 4087–4099. doi: 10.1103/PhysRevE.49.4087
dc.identifier.citedreferenceDoering, C. R.; Constantin, P. Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53 ( 1996 ), 5957 – 5981. doi: 10.1103/PhysRevE.53.5957
dc.identifier.citedreferenceDoering, C.; Constantin, P. On upper bounds for infinite Prandtl number convection with or without rotation. J. Math. Phys. 42 ( 2001 ), no. 2, 784 – 795. doi: 10.1063/1.1336157
dc.identifier.citedreferenceDoering, C. R.; Gibbon, J. D. Applied analysis of the Navier-Stokes equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511608803
dc.identifier.citedreferenceDoering, C. R,; Otto, F.; Reznikoff, M. G. Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh–Bénard convection. J. Fluid Mech. 560 ( 2006 ), 229 – 241. doi: 10.1017/S0022112006000097
dc.identifier.citedreferenceFannjiang, A.; Papanicolaou, G. Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 ( 1994 ), no. 2, 333 – 408. doi: 10.1137/S0036139992236785
dc.identifier.citedreferenceGhoussoub, N. Self-dual partial differential systems and their variational principles. Springer Monographs in Mathematics, Springer, New York, 2009.
dc.identifier.citedreferenceHassanzadeh, P.; Chini, G. P.; Doering, C. R. Wall to wall optimal transport. J. Fluid. Mech. 751 ( 2014 ), 627 – 662. doi: 10.1017/jfm.2014.306
dc.identifier.citedreferenceHewitt, D. R.; Neufeld, J. A.; Lister, J. R. Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108 ( 2012 ), 224503. doi: 10.1103/PhysRevLett.108.224503
dc.identifier.citedreferenceJin, W.; Sternberg, P. Energy estimates for the von Kármán model of thin-film blistering. J. Math. Phys. 42 ( 2001 ), no. 1, 192 – 199. doi: 10.1063/1.1316058
dc.identifier.citedreferenceKohn, R. V. Energy-driven pattern formation. International Congress of Mathematicians. Vol. I, 359 – 383. European Mathematical Society, Zürich, 2007. doi: 10.4171/022-1/15
dc.identifier.citedreferenceMalkus, W. V. R. The heat transport and spectrum of thermal turbulence. Proc. Roy. Soc. London. Ser. A. 225 ( 1954 ), 196 – 212. doi: 10.1098/rspa.1954.0197
dc.identifier.citedreferenceMarcotte, F.; Doering, C. R.; Thiffeault, J.-L.; Young, W. R. Optimal heat transfer and optimal exit times. SIAM J. Appl. Math. 78 ( 2018 ), no. 1, 591 – 608. doi: 10.1137/17M1150220
dc.identifier.citedreferenceMilton, G. W. On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Comm. Pure Appl. Math. 43 ( 1990 ), no. 1, 63 – 125. doi: 10.1002/cpa.3160430104
dc.identifier.citedreferenceMotoki, S.; Kawahara, G.; Shimizu, M. Maximal heat transfer between two parallel plates. J. Fluid Mech. 851 ( 2018 ), R4, 14 pp. doi: 10.1017/jfm.2018.557
dc.identifier.citedreferenceMotoki, S.; Kawahara, G.; Shimizu, M. Optimal heat transfer enhancement in plane Couette flow. Journal of Fluid Mechanics 835 ( 2018 ), 1157 – 1198. doi: 10.1017/jfm.2017.779
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.