Show simple item record

White matter T2 hyperintensities and blood‐brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalin‐2

dc.contributor.authorToyota, Yasunori
dc.contributor.authorWei, Jialiang
dc.contributor.authorXi, Guohua
dc.contributor.authorKeep, Richard F.
dc.contributor.authorHua, Ya
dc.date.accessioned2019-10-30T15:30:24Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-10-30T15:30:24Z
dc.date.issued2019-10
dc.identifier.citationToyota, Yasunori; Wei, Jialiang; Xi, Guohua; Keep, Richard F.; Hua, Ya (2019). "White matter T2 hyperintensities and blood‐brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalin‐2." CNS Neuroscience & Therapeutics 25(10): 1207-1214.
dc.identifier.issn1755-5930
dc.identifier.issn1755-5949
dc.identifier.urihttps://hdl.handle.net/2027.42/151855
dc.description.abstractAimsThe current study examined whether white matter injury occurs in the hyperacute (4 hours) phase after subarachnoid hemorrhage (SAH) and the potential role of blood‐brain barrier (BBB) disruption and an acute phase protein, lipocalin 2 (LCN2), in that injury.MethodsSubarachnoid hemorrhage was induced by endovascular perforation in adult mice. First, wild‐type (WT) mice underwent MRI 4 hours after SAH to detect white matter T2 hyperintensities. Second, changes in LCN2 expression and BBB disruption associated with the MRI findings were examined. Third, SAH‐induced white matter injury at 4 hours was compared in WT and LCN2 knockout (LCN2 KO) mice.ResultsAt 4 hours, most animals had uni‐ or bilateral white matter T2 hyperintensities after SAH in WT mice that were associated with BBB disruption and LCN2 upregulation. However, some disruption and LCN2 upregulation was also found in mice with no T2‐hyperintensity lesion. In contrast, there were no white matter T2 hyperintensities in LCN2 KO mice after SAH. LCN2 deficiency also attenuated BBB disruption, myelin damage, and oligodendrocyte loss.ConclusionsSubarachnoid hemorrhage causes very early BBB disruption and LCN2 expression in white matter that is associated with and may precede T2 hyperintensities. LCN2 deletion attenuates MRI changes and pathological changes in white matter after SAH.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherblood‐brain barrier
dc.subject.otherT2 hyperintensity
dc.subject.othersubarachnoid hemorrhage
dc.subject.otherwhite matter injury
dc.subject.otherlipocalin‐2
dc.subject.otherknockout mice
dc.titleWhite matter T2 hyperintensities and blood‐brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalin‐2
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhilosophy
dc.subject.hlbtoplevelHumanities
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151855/1/cns13221.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151855/2/cns13221_am.pdf
dc.identifier.doi10.1111/cns.13221
dc.identifier.sourceCNS Neuroscience & Therapeutics
dc.identifier.citedreferenceNi W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin‐2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2015; 35 ( 9 ): 1454 ‐ 1461.
dc.identifier.citedreferenceEnkhjargal B, McBride DW, Manaenko A, et al. Intranasal administration of vitamin D attenuates blood‐brain barrier disruption through endogenous upregulation of osteopontin and activation of CD44/P‐gp glycosylation signaling after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2017; 37 ( 7 ): 2555 ‐ 2566.
dc.identifier.citedreferenceWang KC, Tang SC, Lee JE, et al. Cerebrospinal fluid high mobility group box 1 is associated with neuronal death in subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2017; 37 ( 2 ): 435 ‐ 443.
dc.identifier.citedreferenceEgashira Y, Hua Y, Keep RF, Iwama T, Xi G. Lipocalin 2 and blood‐brain barrier disruption in white matter after experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2016; 121: 131 ‐ 134.
dc.identifier.citedreferenceLee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010; 30 ( 11 ): 1793 ‐ 1803.
dc.identifier.citedreferenceColtman R, Spain A, Tsenkina Y, et al. Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiol Aging. 2011; 32 ( 12 ): 2324.e7 ‐ 2324.e12.
dc.identifier.citedreferenceWu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron‐handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003; 34 ( 12 ): 2964 ‐ 2969.
dc.identifier.citedreferenceEgashira Y, Zhao H, Hua Y, Keep RF, Xi G. White matter injury after subarachnoid hemorrhage: role of blood‐brain barrier disruption and matrix metalloproteinase‐9. Stroke. 2015; 46 ( 10 ): 2909 ‐ 2915.
dc.identifier.citedreferenceKummer TT, Magnoni S, MacDonald CL, et al. Experimental subarachnoid haemorrhage results in multifocal axonal injury. Brain. 2015; 138 ( Pt 9 ): 2608 ‐ 2618.
dc.identifier.citedreferenceWright RM, Ramesh KT. An axonal strain injury criterion for traumatic brain injury. Biomech Model Mechanobiol. 2012; 11 ( 1–2 ): 245 ‐ 260.
dc.identifier.citedreferenceLeithner C, Fuchtemeier M, Jorks D, Mueller S, Dirnagl U, Royl G. Infarct volume prediction by early magnetic resonance imaging in a murine stroke model depends on ischemia duration and time of imaging. Stroke. 2015; 46 ( 11 ): 3249 ‐ 3259.
dc.identifier.citedreferenceMishra SK, Kumar BS, Khushu S, Singh AK, Gangenahalli G. Early monitoring and quantitative evaluation of macrophage infiltration after experimental traumatic brain injury: a magnetic resonance imaging and flow cytometric analysis. Mol Cell Neurosci. 2017; 78: 25 ‐ 34.
dc.identifier.citedreferenceAlsop DC, Murai H, Detre JA, McIntosh TK, Smith DH. Detection of acute pathologic changes following experimental traumatic brain injury using diffusion‐weighted magnetic resonance imaging. J Neurotrauma. 1996; 13 ( 9 ): 515 ‐ 521.
dc.identifier.citedreferenceClaassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002; 33 ( 5 ): 1225 ‐ 1232.
dc.identifier.citedreferenceMao S, Xi G, Keep RF, Hua Y. Role of lipocalin‐2 in thrombin‐induced brain injury. Stroke. 2016; 47 ( 4 ): 1078 ‐ 1084.
dc.identifier.citedreferenceKim JH, Ko PW, Lee HW, et al. Astrocyte‐derived lipocalin‐2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia. 2017; 65 ( 9 ): 1471 ‐ 1490.
dc.identifier.citedreferenceNakamura I, Hama S, Itakura S, et al. Lipocalin2 as a plasma marker for tumors with hypoxic regions. Sci Rep. 2014; 4: 7235.
dc.identifier.citedreferenceRauen T, Weiskirchen R, Floege J. In search of early events in the development of chronic kidney disease: the emerging role for lipocalin‐2/NGAL. Nephrol Dial Transplant. 2011; 26 ( 2 ): 445 ‐ 447.
dc.identifier.citedreferenceOstrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen‐induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005; 25 ( 5 ): 554 ‐ 571.
dc.identifier.citedreferenceWang Z, Meng CJ, Shen XM, et al. Potential contribution of hypoxia‐inducible factor‐1alpha, aquaporin‐4, and matrix metalloproteinase‐9 to blood‐brain barrier disruption and brain edema after experimental subarachnoid hemorrhage. J Mol Neurosci. 2012; 48 ( 1 ): 273 ‐ 280.
dc.identifier.citedreferenceXu W, Xu R, Li X, Zhang H, Wang X, Zhu J. Downregulating hypoxia‐inducible factor‐1alpha expression with perfluorooctyl‐bromide nanoparticles reduces early brain injury following experimental subarachnoid hemorrhage in rats. Am J Transl Res. 2016; 8 ( 5 ): 2114 ‐ 2126.
dc.identifier.citedreferenceJin M, Kim JH, Jang E, et al. Lipocalin‐2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2014; 34 ( 8 ): 1306 ‐ 1314.
dc.identifier.citedreferenceDu Y, Li W, Lin L, Lo EH, Xing C. Effects of lipocalin‐2 on brain endothelial adhesion and permeability. PLoS ONE. 2019; 14 ( 7 ): e0218965.
dc.identifier.citedreferenceKeep RF, Andjelkovic AV, Xiang J, et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab. 2018; 38 ( 8 ): 1255 ‐ 1275.
dc.identifier.citedreferenceWang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurogibol. 2016; 141: 45 ‐ 60.
dc.identifier.citedreferenceMutoh T, Sasaki K, Nakamura K, Tatewaki Y, Ishikawa T, Taki Y. Neurocardiac protection with milrinone for restoring acute cerebral hypoperfusion and delayed ischemic injury after experimental subarachnoid hemorrhage. Neurosci Lett. 2017; 640: 70 ‐ 75.
dc.identifier.citedreferenceKamiya K, Kuyama H, Symon L. An experimental study of the acute stage of subarachnoid hemorrhage. J Neurosurg. 1983; 59 ( 6 ): 917 ‐ 924.
dc.identifier.citedreferenceCahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke. 2009; 40 ( 3 Suppl ): S86 ‐ S87.
dc.identifier.citedreferenceEgashira Y, Hua Y, Keep RF, Xi G. Acute white matter injury after experimental subarachnoid hemorrhage: potential role of lipocalin 2. Stroke. 2014; 45 ( 7 ): 2141 ‐ 2143.
dc.identifier.citedreferenceOstrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006; 28 ( 4 ): 399 ‐ 414.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.