Show simple item record

The Connected Isotopic Water Cycle in the Community Earth System Model Version 1

dc.contributor.authorBrady, E.
dc.contributor.authorStevenson, S.
dc.contributor.authorBailey, D.
dc.contributor.authorLiu, Z.
dc.contributor.authorNoone, D.
dc.contributor.authorNusbaumer, J.
dc.contributor.authorOtto‐bliesner, B. L.
dc.contributor.authorTabor, C.
dc.contributor.authorTomas, R.
dc.contributor.authorWong, T.
dc.contributor.authorZhang, J.
dc.contributor.authorZhu, J.
dc.date.accessioned2019-10-30T15:30:27Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:30:27Z
dc.date.issued2019-08
dc.identifier.citationBrady, E.; Stevenson, S.; Bailey, D.; Liu, Z.; Noone, D.; Nusbaumer, J.; Otto‐bliesner, B. L. ; Tabor, C.; Tomas, R.; Wong, T.; Zhang, J.; Zhu, J. (2019). "The Connected Isotopic Water Cycle in the Community Earth System Model Version 1." Journal of Advances in Modeling Earth Systems 11(8): 2547-2566.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/151857
dc.description.abstractBecause of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both largeâ scale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between largeâ scale ocean and atmospheric circulation and smallerâ scale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotopeâ enabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850â 2005 period, iCESM1 correctly captures the lateâ twentiethâ century structure of δ18O and δD over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater δ18O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotopeâ enabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.Key PointsAn isotopeâ enabled version of the Community Earth System Model (iCESM1) is now publicly availableiCESM1 simulates the major observed features of δ18O and δD over the late twentieth centuryiCESM1 is useful for both modern climate and paleoclimate applications
dc.publisherNOAA
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwater isotopologues
dc.subject.otherclimate modeling
dc.subject.otherCESM
dc.titleThe Connected Isotopic Water Cycle in the Community Earth System Model Version 1
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151857/1/jame20931.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151857/2/jame20931_am.pdf
dc.identifier.doi10.1029/2019MS001663
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferenceRisi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Walker, K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V., Deutscher, N., Griffith, D., Wennberg, P. O., Strong, K., Smale, D., Mahieu, E., Barthlott, S., Hase, F., García, O., Notholt, J., Warneke, T., Toon, G., Sayres, D., Bony, S., Lee, J., Brown, D., Uemura, R., & Sturm, C. ( 2012 ). Processâ evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research, 117, D05303. https://doi.org/10.1029/2011JD016621
dc.identifier.citedreferenceRoche, D. M., Paillard, D., Caley, T., & Waelbroeck, C. ( 2014 ). LGM hosing approach to Heinrich event 1: Results and perspectives from dataâ model integration using water isotopes. Quaternary Science Reviews, 106, 247 â 261. https://doi.org/10.1016/j.quascirev.2014.07.020
dc.identifier.citedreferenceRusson, T., Tudhope, A. W., Hegerl, G. C., Collins, M., & Tindall, J. ( 2013 ). Interâ annual tropical Pacific climate variability in an isotopeâ enabled CGCM: Implications for interpreting coral stable oxygen isotope records of ENSO. Climate of the Past, 9 ( 4 ), 1543 â 1557. https://doi.org/10.5194/cpâ 9â 1543â 2013
dc.identifier.citedreferenceKim, S.‐T., & O’Neil, J. R. ( 1997 ). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61, 16, 3461 â 3475. ISSN 0016â 7037. https://doi.org/10.1016/S0016â 7037(97)00169â 5
dc.identifier.citedreferenceSchmidt, G. A. ( 1998 ). Oxygenâ 18 variations in a global ocean model. Geophysical Research Letters, 25 ( 8 ), 1201 â 1204. https://doi.org/10.1029/98GL50866
dc.identifier.citedreferenceSchmidt, G. A. ( 1999 ). Forward modeling of carbonate proxy data from planktonic foraminifera using oxygen isotope tracers in a global ocean model. Paleoceanography, 14 ( 4 ), 482 â 497. https://doi.org/10.1029/1999PA900025
dc.identifier.citedreferenceSchmidt, G. A., Hoffmann, G., Shindell, D. T., & Hu, Y. ( 2005 ). Modelling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphereâ troposphere water exchange. Journal of Geophysical Research, 110, D21314. https://doi.org/10.1029/2005JD005790
dc.identifier.citedreferenceSchmidt, G. A., LeGrande, A. N., & Hoffmann, G. ( 2007 ). Water isotope expressions of intrinsic and forced variability in a coupled oceanâ atmosphere model. Journal of Geophysical Research, 112, D10103. https://doi.org/10.1029/2006JD007781
dc.identifier.citedreferenceSingh, H. A., Bitz, C. M., Nusbaumer, J., & Noone, D. C. ( 2016 ). A mathematical framework for analysis of water tracers: Part 1â Development of theory and application to the preindustrial mean state. Journal of Advances in Modeling Earth Systems, 8, 991 â 1013. https://doi.org/10.1002/2016MS000649
dc.identifier.citedreferenceSingh, H., Donohoe, A., Bitz, C. M., Nusbaumer, J., & Noone, D. C. ( 2016 ). Greater moisture transport distances with warming amplify interbasin salinity contrasts. Geophysical Research Letters, 43, 8677 â 8684. https://doi.org/10.1002/2016GL069796
dc.identifier.citedreferenceSmith, R., P. Jones, B. Briegleb, F. Bryan, G. Danabasoglu, J. Dennis, J. Dukowicz, C. Eden, B. Foxâ Kemper, P. Gent, M. Hecht, S. Jayne, M. Jochum, W. Large, K. Lindsay, M. Maltrud, N. Norton, S. Peacock, M. Vertenstein, and S. Yeager. 2010. The Parallel Ocean Program (POP) Reference Manual, Ocean Component of the Community Climate System Model (CCSM). Tech. Rep., Los Alamos National Laboratory Tech. Rep. LAURâ 10â 01853.
dc.identifier.citedreferenceSodemann, H., Wernli, H., & Schwierz, C. ( 2009 ). Sources of water vapour contributing to the Elbe flood in August 2002â A tagging study in a mesoscale model. Quarterly Journal of the Royal Meteorological Society, 135 ( 638 ), 205 â 223. https://doi.org/10.1002/qj.374
dc.identifier.citedreferenceStevenson, S. ( 2012 ). Significant changes to ENSO strength and impacts in the 21st century: Results from CMIP5. Geophysical Research Letters, 39, L17703. https://doi.org/10.1029/2012GL052759
dc.identifier.citedreferenceStevenson, S., Capotondi, A., Fasullo, J., & Ottoâ Blisener, B. ( 2016 ). Forced changes to twentieth century ENSO diversity in a last millennium context. Climate Dynamics, 52 ( 12 ), 7359 â 7374. https://doi.org/10.1007/s00382â 017â 3573â 5
dc.identifier.citedreferenceStevenson, S., Powell, B., Cobb, K., Nusbaumer, J., Merrifield, M., & Noone, D. ( 2018 ). Twentieth century seawater δ 18 O dynamics and implications for coral based climate reconstruction. Paleoceanography and Paleoclimatology, 33, 606 â 625. https://doi.org/10.1029/2017PA003304
dc.identifier.citedreferenceStewart, M. K. ( 1975 ). Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. Journal of Geophysical Research, 80, 1133 â 1146. https://doi.org/10.1029/JC080i009p01133
dc.identifier.citedreferenceTabor, C. R., Ottoâ Bliesner, B. L., Brady, E. C., Nusbaumer, J., Zhu, J., Erb, M. P., Wong, T. E., Liu, Z., & Noone, D. ( 2018 ). Interpreting precession driven δ 18 O variability in the South Asian monsoon region. Journal of Geophysical Research: Atmospheres, 123, 5927 â 5946. https://doi.org/10.1029/2018JD028424
dc.identifier.citedreferenceTharammal, T., Paul, A., Merkel, U., & Noone, D. ( 2013 ). Influence of LGM boundary conditions on the global water isotope distribution in an atmospheric general circulation model. Climate of the Past, 9 ( 2 ), 789 â 809. https://doi.org/10.5194/cpâ 9â 789â 2013
dc.identifier.citedreferenceThompson, D. M., Ault, T. R., Evans, M. N., Cole, J. E., & Emileâ Geay, J. ( 2011 ). Comparison of observed and simulated tropical climate trends using a forward model of coral δ 18 O. Geophysical Research Letters, 38, L14706. https://doi.org/10.1029/2011GL048224
dc.identifier.citedreferenceTindall, J. C., Valdes, P. J., & Sime, L. C. ( 2009 ). Stable water isotopes in HadCM3: Isotopic signature of El Niñoâ Southern Oscillation and the tropical amount effect. Journal of Geophysical Research, 114, D04111. https://doi.org/10.1029/2008JD010825
dc.identifier.citedreferenceTremoy, G., Vimeux, F., Soumana, S., Souley, I., Risi, C., Favreau, G., & Oi, M. ( 2014 ). Clustering mesoscale convective systems with laserâ based water vapor delta Oâ 18 monitoring in Niamey (Niger). Journal of Geophysical Research: Atmospheres, 119, 5079 â 5103. https://doi.org/10.1002/2013JD020968
dc.identifier.citedreferenceVachon, R. W., Welker, J. M., White, J. W. C., & Vaughn, B. H. ( 2010 ). Moisture source temperatures and precipitation δ 18 Oâ temperature relationships across the United States. Water Resources Research, 46, W07523. https://doi.org/10.1029/2009WR008558
dc.identifier.citedreferenceWadley, M., Bigg, G., Rohling, E., & Payne, A. ( 2002 ). On modelling presentâ day and last glacial maximum oceanic δ 18 O distributions. Global and Planetary Change, 32 ( 2â 3 ), 89 â 109. https://doi.org/10.1016/S0921â 8181(01)00084â 4
dc.identifier.citedreferenceWang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., & Dorale, J. A. ( 2001 ). A highâ resolution absoluteâ dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 294 ( 5550 ), 2345 â 2348. https://doi.org/10.1126/science.1064618
dc.identifier.citedreferenceWerner, M., Haese, B., Xu, X., Zhang, X., Butzin, M., & Lohmann, G. ( 2016 ). Glacialâ interglacial changes in H 2 18 O, HDO and deuterium excessâ Results from the fully coupled ECHAM5/MPIâ OM Earth system model. Geoscientific Model Development, 9 ( 2 ), 647 â 670. https://doi.org/10.5194/gmdâ 9â 647â 2016
dc.identifier.citedreferenceWerner, M., Langebroek, P. M., Carlsen, T., Herold, M., & Lohmann, G. ( 2011 ). Stable water isotopes in the ECHAM5 general circulation model: Toward highâ resolution isotope modeling on a global scale. Journal of Geophysical Research, 116, D15109. https://doi.org/10.1029/2011JD015681
dc.identifier.citedreferenceWong, T., Nusbaumer, J., & Noone, D. C. ( 2017 ). Evaluation of modeled landâ atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model (CLM4). Journal of Advances in Modeling Earth Systems, 9, 978 â 1001. https://doi.org/10.1002/2016MS000842
dc.identifier.citedreferenceZachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. ( 2001 ). Trends, global rhythms, aberrations in global climate 65 Ma to present. Science, 292 ( 5517 ), 686 â 693. https://doi.org/10.1126/science.1059412
dc.identifier.citedreferenceZhang, J., Liu, Z., Brady, E. C., Jahn, A., Lindsay, K., Oppo, D. W., Clark, P. U., & Marcott, S. A. ( 2017 ). Asynchronous warming and δ 18 O evolution of deep Atlantic water masses during the last deglaciation. Proceedings of the National Academy of Sciences, 114 ( 42 ), 11,075 â 11,080. https://doi.org/10.1073/pnas.1704512114
dc.identifier.citedreferenceZhu, J., Liu, Z., Brady, E., Ottoâ Bliesner, B., Zhang, J., Noone, D., Tomas, R., Nusbaumer, J., Wong, T., Jahn, A., & Tabor, C. ( 2017b ). Reduced ENSO variability at the LGM revealed by an isotopeâ enabled Earth system model. Geophysical Research Letters, 44, 6984 â 6992. https://doi.org/10.1002/2017GL073406
dc.identifier.citedreferenceZhu, J., Liu, Z., Brady, E. C., Ottoâ Bliesner, B. L., Marcott, S. A., Zhang, J., Wang, X., Nusbaumer, J., Wong, T. E., Jahn, A., & Noone, D. ( 2017a ). Investigating the direct meltwater effect in terrestrial oxygenâ isotope paleoclimate records using an isotopeâ enabled Earth system model. Geophysical Research Letters, 44, 12,501 â 12,510. https://doi.org/10.1002/2017GL076253
dc.identifier.citedreferenceAggarwal, P. K., Romatschke, U., Araguasâ Araguas, L., Belachew, D., Longstaffe, F. J., Berf, P., Schumacher, C., & Funk, A. ( 2016 ). Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 9 ( 8 ), 624 â 629. https://doi.org/10.1038/ngeo2739
dc.identifier.citedreferenceAnchukaitis, K. J., Buckley, B. M., Cook, E. R., Cook, B. I., D’Arrigo, R. D., & Ammann, C. M. 2010. Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophysical Research Letters, 37, L22703. https://doi.org/10.1029/2010GL044843
dc.identifier.citedreferenceBakker, P., Schmittner, A., Lenaerts, J. T. M., Abeâ Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W. L., Hu, A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., & Yin, J. ( 2016 ). Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 43, 12,252 â 12,260. https://doi.org/10.1002/2016GL070457
dc.identifier.citedreferenceBellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., & Vialard, J. ( 2014 ). ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dynamics, 42 ( 7â 8 ), 1999 â 2018. https://doi.org/10.1007/s00382â 013â 1783â z
dc.identifier.citedreferenceBerkelhammer, M., Risi, C., Kurita, N., & Noone, D. C. ( 2012 ). The moisture source sequence for the Maddenâ Julian Oscillation as derived from satellite retrievals of HDO and H 2 O. Journal of Geophysical Research, 117, D03106. https://doi.org/10.1029/2011JD016803
dc.identifier.citedreferenceBigg, G. R., & Rohling, E. J. ( 2000 ). An oxygen isotope data set for marine waters. Journal of Geophysical Research, 105 ( C4 ), 8527 â 8535.
dc.identifier.citedreferenceBond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., & Bonani, G. ( 1993 ). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365 ( 6442 ), 143 â 147. https://doi.org/10.1038/365143a0
dc.identifier.citedreferenceBony, S., Risi, C., & Vimeux, F. ( 2008 ). Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiativeâ convective equilibrium and Tropical Oceanâ Global Atmosphereâ Coupled Oceanâ Atmosphere Response Experiment (TOGAâ COARE)simulations. Journal of Geophysical Research, 113, D19306. https://doi.org/10.1029/2008JD009942
dc.identifier.citedreferenceBosilovich, M. G. ( 2002 ). On the vertical distribution of local and remote sources of water for precipitation. Meteorology Atmospheric Physics, 80 ( 1â 4 ), 31 â 41.
dc.identifier.citedreferenceBoyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O’Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., & Zweng, M. M. ( 2013 ). In S. Levitus (Ed.), A. Mishonov, Technical Ed World Ocean Database 2013, NOAA Atlas NESDIS, (Vol. 72 ). Silver Spring, MD: NOAA 209 pp. http://doi.org/10.7289/V5NZ85MT
dc.identifier.citedreferenceBuenning, N., Noone, D., Riley, W., Still, C., & White, J. ( 2011 ). Influences of the hydrological cycle on observed interâ annual variations in atmospheric CO 18 O. Journal of Geophysical Research, 116, G04001. https://doi.org/10.1029/2010JG001576
dc.identifier.citedreferenceCaley, T., & Roche, D. ( 2013 ). d 18 O water isotope in the iLOVECLIM model (version 1.0)â Part 3: A palaeoâ perspective based on presentâ day dataâ model comparison for oxygen stable isotopes in carbonates. Geoscientific Model Development, 6 ( 5 ), 1505 â 1516. https://doi.org/10.5194/gmdâ 6â 1505â 2013
dc.identifier.citedreferenceCobb, K., Charles, C., Cheng, H., & Edwards, R. ( 2003 ). El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271 â 276.
dc.identifier.citedreferenceCobb, K., Charles, C. D., Cheng, H., Edwards, R. L., Sayani, H. R., & Westphal, N. ( 2013 ). Highly variable El Niñoâ Southern Oscillation throughout the Holocene. Science, 339, 67 â 70. http://doi.org/10.1126/science.1228246
dc.identifier.citedreferenceConroy, J. L., Cobb, K. M., Lynchâ Stieglitz, J., Polissar, P. J. ( 2014 ). Constraints on the salinityâ oxygen isotope relationship in the centraltropical Pacific Ocean. Marine Chemistry, 161, 26 â 33. https://doi.org/10.1016/j.marchem.2014.02.001
dc.identifier.citedreferenceConroy, J., Cobb, K. M., & Noone, D. ( 2013 ). Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations. Journal of Geophysical Research: Atmospheres, 118, 5867 â 5892. https://doi.org/10.1002/jgrd.50412
dc.identifier.citedreferenceCraig, H. ( 1961 ). Isotopic variations in meteoric waters. Science, 133 ( 3465 ), 1702 â 1703. https://doi.org/10.1126/science.133.3465.1702
dc.identifier.citedreferenceCraig, H., & Gordon, L. ( 1965 ). Deuterium and oxygenâ 18 in the ocean and the marine atmosphere. In E. Tongiorgi (Ed.), Stable isotopes in oceanographic studies and paleotemperatures, (pp. 9 â 130 ). Spoleto, Italy: Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare.
dc.identifier.citedreferenceDanabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., & Yeager, S. G. ( 2011 ). The CCSM4 ocean component. Journal of Climate, 25 ( 5 ), 1361 â 1389. https://doi.org/10.1175/JCLIâ Dâ 11â 00091.1
dc.identifier.citedreferenceDanabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., & Yeager, S. G. ( 2012 ). The CCSM4 ocean component. Journal of Climate, 25 ( 5 ), 1361 â 1389. https://doi.org/10.1175/JCLIâ Dâ 11â 00091.1
dc.identifier.citedreferenceDansgaard, W. ( 1964 ). Stable isotopes in precipitation. Tellus, 16 ( 4 ), 436 â 468. https://doi.org/10.1111/j.2153â 3490.1964.tb00181.x
dc.identifier.citedreferenceDansgaard, W., Johnsen, S. J., Clausen, H. B., Dahlâ Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., Bond, G. ( 1993 ). Evidence for general instability of past climate from a 250â kyr iceâ core record. Nature, 364 ( 6434 ), 218 â 220.
dc.identifier.citedreferenceDee, S., Noone, D., Buenning, N., Emileâ Geay, J., & Zhou, Y. ( 2015 ). SPEEDYâ IER: A fast atmospheric GCM with water isotope physics. Journal of Geophysical Research: Atmospheres, 120, 73 â 91. https://doi.org/10.1002/2014JD022194
dc.identifier.citedreferenceDee, S. G., Nusbaumer, J., Bailey, A., Russell, J. M., Lee, J.â E., Konecky, B. L., Buenning, N., & Noone, D. ( 2018 ). Tracking the strength of the Walker Circulation with stable isotopes in water vapor. Journal of Geophysical Research: Atmospheres, 123, 7254 â 7270. https://doi.org/10.1029/2017JD027915
dc.identifier.citedreferenceDelaygue, G., Jouzel, J., & Dutay, J.â C. ( 2000 ). Oxygen 18â salinity relationship simulated by an oceanic general circulation model. Earth and Planetary Science Letters, 178 ( 1â 2 ), 113 â 123. https://doi.org/10.1016/S0012â 821X(00)00073â X
dc.identifier.citedreferenceDominguez, F., Miguezâ Macho, G., & Hu, H. ( 2016 ). WRF with water vapor tracers: A study of moisture sources for the North American Monsoon. Journal of Hydrometeorology., 17 ( 7 ), 1915 â 1927. https://doi.org/10.1175/JHMâ Dâ 15â 0221.1
dc.identifier.citedreferenceDyer, E. L. E., Jones, D. B. A., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., & Noone, D. ( 2017 ). Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research: Atmospheres, 122, 6882 â 6898. https://doi.org/10.1002/2016JD026240
dc.identifier.citedreferenceEpstein, S., Mayeda, T. ( 1953 ). Variation of O 18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4 ( 5 ), 213 â 224.
dc.identifier.citedreferenceEpstein, S., Sharp, R. P., & Gow, A. J. ( 1965 ). Sixâ Year Record of Oxygen and Hydrogen Isotope Variations in South Pole Firn. Journal of Geophysical Research, 70 ( 8 ), 1809 â 1814.
dc.identifier.citedreferenceEvans, M. N., Tolwinskiâ Ward, S. E., Thompson, D. M., & Anchukaitis, K. J. ( 2013 ). Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews, 76, 16 â 28. http://doi.org/10.1016/j.quascirev.2013.05.024
dc.identifier.citedreferenceField, R. D., Kim, D., LeGrande, A. N., Worden, J., Kelley, M., & Schmidt, G. A. ( 2014 ). Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES. Geophysical Research Letters., 41, 6030 â 6036. https://doi.org/10.1002/2014GL060572
dc.identifier.citedreferenceGalewsky, J., Steenâ Larsen, H. C., Field, R. D., Worden, J., Risi, C., & Schneider, M. ( 2016 ). Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 54, 809 â 865. https://doi.org/10.1002/2015RG000512
dc.identifier.citedreferenceGat, J. R. ( 2000 ). Atmospheric water balanceâ The isotopic perspective. Hydrological Processes, 14 ( 8 ), 1357 â 1369. https://doi.org/10.1002/1099â 1085(20000615)14:8<1357::AIDâ HYP986>3.0.CO;2â 7
dc.identifier.citedreferenceGent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.â L., Zhang, M. ( 2011 ). The Community Climate System Model version 4. Journal of Climate, 24, 4973 â 4991.
dc.identifier.citedreferenceGuan, J., Liu, Z., Wen, X., Brady, E., Noone, D., Zhu, J., & Han, J. ( 2016 ). Understanding the temporal slope of the temperatureâ water isotope relation during the deglaciation using isoCAM3: The slope equation. Journal of Geophysical Research: Atmospheres, 121, 10,342 â 10,354. https://doi.org/10.1002/2016JD024955
dc.identifier.citedreferenceHeinrich, H. ( 1988 ). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29 ( 2 ), 142 â 152. https://doi.org/10.1016/0033â 5894(88)90057â 9
dc.identifier.citedreferenceHoffmann, G., Werner, M., & Heimann, M. ( 1998 ). Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. Journal of Geophysical Research, 103 ( D14 ), 16,871 â 16,896. https://doi.org/10.1029/98JD00423
dc.identifier.citedreferenceHu, J., Emileâ Geay, J., Nusbaumer, J., & Noone, D. ( 2018 ). Impact of convective activity on precipitation δ 18 O in isotopeâ enabled general circulation models. Journal of Geophysical Research: Atmospheres, 123, 13,595 â 13,610. https://doi.org/10.1029/2018JD029187
dc.identifier.citedreferenceHunke, E. C. ( 2010 ). Thickness sensitivities in the CICE sea ice model. Ocean Modelling, 34 ( 3â 4 ), 137 â 149.
dc.identifier.citedreferenceHurley, J. V., Vuille, M., & Hardy, D. R. ( 2019 ). On the Interpretation of the ENSO Signal Embedded in the Stable Isotopic Composition of Quelccaya Ice Cap, Peru. Journal of Geophysical Research: Atmospheres, 124 ( 1 ), 131 â 145.
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., & Marshall, S. ( 2013 ). The Community Earth System Model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 â 1360. https://doi.org/10.1175/BAMSâ Dâ 12â 00121.1
dc.identifier.citedreferenceIAEA/WMO ( 2016 ). Global Network of Isotopes in Precipitation (GNIP). Vienna, Austria. Retrieved from http://wwwâ naweb.iaea.org/napc/ih/IHS_resources_gnip.html
dc.identifier.citedreferenceJahn, A., Lindsay, K., Giraud, X., Gruber, N., Ottoâ Bliesner, B. L., Liu, Z., & Brady, E. C. ( 2015 ). Carbon isotopes in the ocean model of the Community Earth System Model (CESM). Geoscientific Model Development, 8, 2419 â 2434. https://doi.org/10.5194/gmdâ 8â 2419â 2015
dc.identifier.citedreferenceJoussaume, S., Jouzel, J., & Sadourny, R. ( 1984 ). A general circulation model of water isotope cycles in the atmosphere. Nature, 311 ( 5981 ), 24 â 29. https://doi.org/10.1038/311024a0
dc.identifier.citedreferenceJouzel, J., Koster, R., Suozzo, R., Russell, G., White, J., & Broecker, W. ( 1991 ). Simulations of the HDO and H 2 18 O atmospheric cycles using the NASA GISS general circulation model: Sensitivity experiments for presentâ day conditions. Journal of Geophysical Research, 96 ( D4 ), 7495 â 7507. https://doi.org/10.1029/90JD02663
dc.identifier.citedreferenceJouzel, J., & Merlivat, L. ( 1984 ). Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. Journal of Geophysical Research, 89 ( D7 ), 11,749. https://doi.org/10.1029/JD089iD07p11749. issn: 0148â 0227
dc.identifier.citedreferenceJouzel, J., Russell, G., Suozzo, R., Koster, R., White, J., & Broecker, W. ( 1987 ). Simulations of the HDO and H 2 18 O atmospheric cycles using the NASA GISS general circulation model: The seasonal cycle for presentâ day conditions. Journal of Geophysical Research, 92 ( D12 ), 14,739 â 14,760. https://doi.org/10.1029/JD092iD12p14739
dc.identifier.citedreferenceKanner, L., Buenning, N., Stott, L., Timmermann, A., & Noone, D. ( 2014 ). The role of soil processes in d 18 O terrestrial climate proxies. Global Biogeochemical Cycles, 28, 239 â 252. https://doi.org/10.1002/2013GB004742
dc.identifier.citedreferenceKaramperidou, C., DiNezio, P. N., Timmermann, A., Jin, F.â F., & Cobb, K. M. ( 2015 ). The response of ENSO flavors to midâ Holocene climate: Implications for proxy interpretation. Paleoceanography and Paleoclimatology, 30 ( 5 ), 527 â 547. https://doi.org/10.1002/2014PA002742
dc.identifier.citedreferenceKay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M. ( 2015 ). The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteorological Society, 96, 1333 â 1349. https://doi.org/10.1175/BAMSâ Dâ 13â 00255.1
dc.identifier.citedreferenceKonecky, B. L., Russell, J. M., Rodysill, J. R., Vuille, M., Bijaksana, S., & Huang, Y. ( 2013 ). Intensification of southwestern Indonesian rainfall over the past millennium. Geophysical Research Letters, 40, 386 â 391. https://doi.org/10.1029/2012GL054331
dc.identifier.citedreferenceKoster, R., Jouzel, J., Suozzo, R., Russell, G., Broecker, W., Rind, D., & Eagleson, P. ( 1986 ). Global sources of local precipitation as determined by the NASA/GISS GCM. Geophysical Research Letters, 13 ( 2 ), 121 â 124. https://doi.org/10.1029/GL013i002p00121
dc.identifier.citedreferenceKuang, Z., Toon, G. C., Wennberg, P. O., & Yung, Y. L. ( 2003 ). Measured HDO/H 2 O ratios across the tropical tropopause. Geophysical Research Letters, 30 ( 7 ), 1372. https://doi.org/10.1029/2003GL017023
dc.identifier.citedreferenceLeGrande, A. N., & Schmidt, G. A. ( 2006 ). Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters, 33, L12604. https://doi.org/10.1029/2006GL026011
dc.identifier.citedreferenceLeGrande, A. N., & Schmidt, G. A. ( 2008 ). Ensemble, water isotopeâ enabled, coupled general circulation modeling insights into the 8.2 ka event. Paleoceanography, 23, PA3207. https://doi.org/10.1029/2008PA001610
dc.identifier.citedreferenceLehmann, M., & Siegenthaler, U. ( 1991 ). Equilibrium oxygenâ and hydrogenâ isotope fractionation between ice and water. Journal of Glaciology, 37 ( 125 ), 23 â 26. https://doi.org/10.1017/S0022143000042751
dc.identifier.citedreferenceLewis, S. C., LeGrande, A. N., Kelley, M., & Schmidt, G. A. ( 2010 ). Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events. Climate of the Past, 6 ( 3 ), 325 â 343. https://doi.org/10.5194/cpâ 6â 325â 2010
dc.identifier.citedreferenceLiu, Z., Lu, Z., Wen, X., Ottoâ Bliesner, B., Timmermann, A., & Cobb, K. ( 2014 ). The evolution and forcing mechanism of El Niño in the last 21,000 years. Nature, 515 ( 7528 ), 550 â 553. https://doi.org/10.1038/nature13963
dc.identifier.citedreferenceLiu, Z., Ottoâ Bliesner, B., He, F., Brady, E., Clark, P., Lynchâ Steiglitz, J., Carlson, A., Curry, W., Brook, E., Jacob, R., Erickson, D., Kutzbach, J., & Cheng, J. ( 2009 ). Transient simulation of deglacial climate evolution with a new mechanism for Bollingâ Allerod warming. Science, 325 ( 5938 ), 310 â 314. https://doi.org/10.1126/science.1171041
dc.identifier.citedreferenceLiu, Z., Wen, X., Brady, E., Ottoâ Bliesner, B., Yu, G., Lu, H., Cheng, H., Wang, Y., Zheng, W., Ding, Y., Edwards, L., Cheng, J., Liu, W., & Yang, H. ( 2014 ). Chinese cave records and East Asian summer monsoon. Quaternary Science Reviews, 83, 115 â 128. https://doi.org/10.1016/j.quascirev.2013.10.021
dc.identifier.citedreferenceLu, Z., & Liu, Z. ( 2018 ). Orbital modulation of ENSO seasonal phase locking. Climate Dynamics, 52 ( 7â 8 ), 4329 â 4350. https://doi.org/10.1007/s00382â 018â 4382â 1
dc.identifier.citedreferenceMajoube, M. ( 1971 ). Fractionating of d 18 O between ice and water vapor. Journal de Chimie Physique et de Physicoâ Chimie Biologique, 68, 625 â 636. Http://www.osti.gov/scitech/biblio/4019841, https://doi.org/10.1051/jcp/1971680625
dc.identifier.citedreferenceMann, M. E., Cane, M. A., Zebiak, S. E., & Clement, A. ( 2005 ). Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 Years. Journal of Climate, 18, 447 â 456. https://doi.org/10.1175/JCLIâ 3276.1
dc.identifier.citedreferenceMathieu, R., Pollard, D., Cole, J., White, J., Webb, R., & Thompson, S. ( 2002 ). Simulation of stable water isotope variations by the GENESIS GCM for modern conditions. Journal of Geophysical Research, 107 ( D4 ), 4037. https://doi.org/10.1029/2001JD900255
dc.identifier.citedreferenceMeehl, G. A., Teng, H., & Branstator, G. W. ( 2006 ). Future changes of El Niño in two global coupled climate models. Climate Dynamics, 26 ( 6 ), 549 â 566. https://doi.org/10.1007/s00382â 005â 0098â 0
dc.identifier.citedreferenceMoerman, J. W., Cobb, K. M., Adkins, J. F., Sodemann, H., Clark, B., & Tuen, A. A. ( 2013 ). Diurnal to interannual δ18O variations in northern Borneo driven by regional hydrology. Earth & Planetary Science Letters, 369â 370, 108 â 119.
dc.identifier.citedreferenceMerlivat, L., & Jouzel, J. ( 1979 ). Global climatic interpretation of the deuteriumâ oxygen 18 relationship for precipitation. Journal of Geophysical Research, 84 ( C8 ), 5029 â 5033. https://doi.org/10.1029/JC084iC08p05029
dc.identifier.citedreferenceMoerman, J. W., Cobb, K. M., Partin, J. W., Meckler, A. N., Carolin, S. A., Adkins, J. F., Malang, J., Lejau, S., Clark, B., & Tuen, A. A. ( 2014 ). Transformation of ENSOâ related rainwater to dripwater d18O variability by vadose water mixing. Geophysical Research Letters, 41, 7907 â 7915.
dc.identifier.citedreferenceNeale, R. B., Chen, C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J., Marsh, D., Mills, M., Smith, A. K., Tilmes, S., Vitt, F., Morrison, H., Cameronâ Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, S. J., Liu, X., Rasch, P. J., and M. A. Taylor ( 2010 ). Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical Noteâ Scientific and Technical Report, NCAR/TNâ 486+STR.
dc.identifier.citedreferenceNEEM community members ( 2013 ). Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493 ( 7433 ), 489 â 494. https://doi.org/10.1038/nature11789
dc.identifier.citedreferenceNoone, D. ( 2008 ). The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation. Journal of Geophysical Research, 113, D04102. https://doi.org/10.1029/2007JD008892
dc.identifier.citedreferenceNoone, D. ( 2012 ). Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere. Journal of Climate, 25 ( 13 ), 4476 â 4494. https://doi.org/10.1175/JCLIâ Dâ 11â 00582.1
dc.identifier.citedreferenceNoone, D., & Simmonds, I. ( 2002 ). Annular variations in moisture transport mechanisms and the abundance of δ 18 O in Antarctic snow. Journal of Geophysical Research, 107 ( D24 ), 4742. https://doi.org/10.1029/2002JD002262
dc.identifier.citedreferenceNoone, D. C., & Sturm, C. ( 2010 ). Comprehensive Dynamical Models of Global and Regional Water Isotope Distributions. In J. B. West, G. J. Bowen, T. E. Dawson, & K. P Tu (Eds.), Isoscapes 195 â 219. Netherlands: Springer
dc.identifier.citedreferenceNusbaumer, J., & Noone, D. ( 2018 ). Numerical evaluation of the modern and future origins of atmospheric river moisture over the West Coast of the United States. Journal of Geophysical Research: Atmospheres, 123, 6423 â 6442. https://doi.org/10.1029/2017JD028081
dc.identifier.citedreferenceNusbaumer, J., Wong, T., Bardeen, C., & Noone, D. ( 2017 ). Evaluating hydrological processes in the Community Atmosphere Model, version 5 (CAM5) using stable isotope ratios of water. Journal of Advances in Modeling Earth Systems, 9, 949 â 977. https://doi.org/10.1002/2016MS000839
dc.identifier.citedreferenceOleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Peter, J., Levis, S., Swenson, S. C., Thornton, E., Feddema, J., & Heald, C. L. ( 2010 ). Technical description of version 4.0 of the Community Land Model (CLM). Boulder: National Center for Atmospheric Research.
dc.identifier.citedreferenceOttoâ Bliesner, B. L., & Brady, E. C. ( 2010 ). The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last Glacial Maximum experiments. Quaternary Science Reviews, 29 ( 1â 2 ), 56 â 73. https://doi.org/10.1016/j.quascirev.2009.07.004
dc.identifier.citedreferenceOttoâ Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., Rosenbloom, N., Mai, A., Strand, G. ( 2016 ). Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model. Bulletin of the American Meteorological Society, 97, 735 â 754. https://doi.org/10.1175/BAMSâ Dâ 14â 00233.1
dc.identifier.citedreferenceOttoâ Bliesner, B. L., Russell, J. M., Clark, P. U., Liu, Z., Overpeck, J. T., Konecky, B., deMenocal, P., Nicholson, S. E., He, F., & Lu, Z. ( 2014 ). Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science, 346, 1223 â 1227.
dc.identifier.citedreferencePaul, A., Mulitza, S., Pätzold, J., & Wolff, T. ( 1999 ). Simulation of oxygen isotopes in a global ocean model. In Use of Proxies in Paleoceanography, (pp. 655 â 686 ). Berlin, Heidelberg: Springer.
dc.identifier.citedreferencePetit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÃ pin, L., Ritz, C., Saltzman, E., & Stievenard, M. ( 1999 ). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399 ( 6735 ), 429 â 436. https://doi.org/10.1038/20859
dc.identifier.citedreferenceRiley, W., Still, C., Torn, M., & Berry, J. ( 2002 ). A mechanistic model of HO and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Global Biogeochemical Cycles, 16 ( 4 ), 1095. https://doi.org/10.1029/2002gb001878
dc.identifier.citedreferenceRisi, C., Bony, S., Vimeux, F., & Jouzel, J. ( 2010 ). Waterâ stable isotopes in the LMDZ4 general circulation model: Model evaluation for presentâ day and past climates and applications to climatic interpretations of tropical isotopic records. Journal of Geophysical Research, 115, D12118. https://doi.org/10.1029/2009JD013255
dc.identifier.citedreferenceRoche, D. M. ( 2013 ). δ 18 O water isotope in the iLOVECLIM model (version 1.0)â Part I: Implementation and verification. Geoscientific Model Development, 6 ( 5 ), 1481 â 1491. https://doi.org/10.5194/gmdâ 6â 1481â 2013
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.