Show simple item record

Mars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Time‐Dependent Simulation

dc.contributor.authorFang, Xiaohua
dc.contributor.authorPawlowski, David
dc.contributor.authorMa, Yingjuan
dc.contributor.authorBougher, Stephen
dc.contributor.authorThiemann, Edward
dc.contributor.authorEparvier, Francis
dc.contributor.authorWang, Wenbin
dc.contributor.authorDong, Chuanfei
dc.contributor.authorLee, Christina O.
dc.contributor.authorDong, Yaxue
dc.contributor.authorBenna, Mehdi
dc.contributor.authorElrod, Meredith
dc.contributor.authorChamberlin, Phillip
dc.contributor.authorMahaffy, Paul
dc.contributor.authorJakosky, Bruce
dc.date.accessioned2019-10-30T15:30:31Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:30:31Z
dc.date.issued2019-08-28
dc.identifier.citationFang, Xiaohua; Pawlowski, David; Ma, Yingjuan; Bougher, Stephen; Thiemann, Edward; Eparvier, Francis; Wang, Wenbin; Dong, Chuanfei; Lee, Christina O.; Dong, Yaxue; Benna, Mehdi; Elrod, Meredith; Chamberlin, Phillip; Mahaffy, Paul; Jakosky, Bruce (2019). "Mars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Time‐Dependent Simulation." Geophysical Research Letters 46(16): 9334-9343.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/151860
dc.description.abstractWe report the first global, time‐dependent simulation of the Mars upper atmospheric responses to a realistic solar flare event, an X8.2 eruption on 10 September 2017. The Mars Global Ionosphere‐Thermosphere Model runs with realistically specified flare irradiance, giving results in reasonably good agreement with the Mars Atmosphere and Volatile EvolutioN spacecraft measurements. It is found that the ionized and neutral regimes of the upper atmosphere are significantly disturbed by the flare but react differently. The ionospheric electron density enhancement is concentrated below ∼110‐km altitude due to enhanced solar X‐rays, closely following the time evolution of the flare. The neutral atmospheric perturbation increases with altitude and is important above ∼150‐km altitude, in association with atmospheric upwelling driven by solar extreme ultraviolet heating. It takes ∼2.5 hr past the flare peak to reach the maximum disturbance and then additional ∼10 hr to generally settle down to preflare levels.Key PointsIonospheric perturbation follows the flare in time and is concentrated mostly below 110‐km altitudeNeutral atmospheric perturbation increases with altitude and is important above 150‐km altitudeIt takes the neutral atmosphere 2.5 hr to reach the perturbation peak and 10 more hours to generally recover
dc.publisherWiley Periodicals, Inc.
dc.subject.otherupper atmosphere
dc.subject.otherionosphere
dc.subject.othersolar flare
dc.subject.otherMars
dc.titleMars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Time‐Dependent Simulation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151860/1/grl59414_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151860/2/grl59414-sup-0001-Text_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151860/3/grl59414.pdf
dc.identifier.doi10.1029/2019GL084515
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMendillo, M., Withwers, P., Hinson, D., Rishbeth, H., & Reinisch, B. ( 2006 ). Effects of solar flares on the ionosphere of Mars. Science, 311, 1135 – 1138.
dc.identifier.citedreferenceBenna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., & Jakosky, B. M. ( 2015 ). First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophysical Research Letters, 42, 8958 – 8965. https://doi.org/10.1002/2015GL066146
dc.identifier.citedreferenceBougher, S. W., & Dickinson, R. E. ( 1988 ). Mars mesosphere and thermosphere: 1. Global mean heat budget and thermal structure. Journal of Geophysical Research, 93 ( A7 ), 7325 – 7337.
dc.identifier.citedreferenceBougher, S. W., Engel, S., Roble, R. G., & Foster, B. ( 2000 ). Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices. Journal of Geophysical Research, 105 ( E7 ), 17,669 – 17,692. https://doi.org/10.1029/1999JE001232
dc.identifier.citedreferenceBougher, S. W., Jakosky, B., Halekas, J., Grebowsky, J., Luhmann, J., Mahaffy, P., Connerney, J., Eparvier, F., Ergun, R., Larson, D., McFadden, J., Mitchell, D., Schneider, N., Zurek, R., Mazelle, C., Andersson, L., Andrews, D., Baird, D., Baker, D. N., Bell, J. M., Benna, M., Brain, D., Chaffin, M., Chamberlin, P., Chaufray, Y., Clarke, J., Collinson, G., Combi, M., Crary, F., Cravens, T., Crismani, M., Curry, S., Curtis, D., Deighan, J., Delory, G., Dewey, R., DiBraccio, G., Dong, C., Dong, Y., Dunn, P., Elrod, M., England, S., Eriksson, A., Espley, J., Evans, S., Fang, X., Fillingim, M., Fortier, K., Fowler, C. M., Fox, J., Gröller, H., Guzewich, S., Hara, T., Harada, Y., Holsclaw, G., Jain, S. K., Jolitz, R., LeBlanc, F., Lee, C. O., Lee, Y., Lefevre, F., Lillis, R., Livi, R., Lo, D., Ma, Y., Mayyasi, M., McClintock, W., McEnulty, T., Modolo, R., Montmessin, F., Morooka, M., Nagy, A., Olsen, K., Peterson, W., Rahmati, A., Ruhunusiri, S., Russell, T. C., Sakai, S., Sauvaud, J. A., Seki, K., Steckiewicz, M., Stevens, M., Stewart, A. I. F., Stiepen, A., Stone, S., Tenishev, V., Thiemann, E., Tolson, R., Toublanc, D., Vogt, M., Weber, T., Withers, P., Woods, T., & Yelle, R. ( 2015 ). Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability. Science, 350, 459. https://doi.org/10.1126/science.aad0459
dc.identifier.citedreferenceBougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., Chizek, M., & Ridley, A. ( 2015 ). Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311 – 342. https://doi.org/10.1002/2014JE004715
dc.identifier.citedreferenceBougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J., Thiemann, E., Eparvier, F. G., Stiepen, A., & Jakosky, B. M. ( 2017 ). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122, 1296 – 1313. https://doi.org/10.1002/2016JA023454
dc.identifier.citedreferenceElrod, M. K., Curry, S. M., Thiemann, E. M. B., & Jain, S. K. ( 2018 ). September 2017 solar flare event: Rapid heating of the Martian neutral upper atmosphere from the X‐class flare as observed by MAVEN. Geophysical Research Letters, 45, 8803 – 8810. https://doi.org/10.1029/2018GL077729
dc.identifier.citedreferenceEparvier, F., Chamberlin, P., Woods, T., & Thiemann, E. ( 2015 ). The solar extreme ultraviolet monitor for MAVEN. Space Science Review, 195, 293 – 301. https://doi.org/10.1007/s11214-015-0195-2
dc.identifier.citedreferenceFallows, K., Withers, P., & Gonzalez, G. ( 2015 ). Response of the Mars ionosphere to solar flares: Analysis of MGS radio occultation data. Journal of Geophysical Research: Space Physics, 120, 9805 – 9825. https://doi.org/10.1002/2015JA021108
dc.identifier.citedreferenceFang, X., Bougher, S. W., Johnson, R. E., Luhmann, J. G., Ma, Y., Wang, Y.‐C., & Liemohn, M. W. ( 2013 ). The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophysical Research Letters, 40, 1922 – 1927. https://doi.org/10.1002/grl.50415
dc.identifier.citedreferenceFang, X., Ma, Y., Brain, D., Dong, Y., & Lillis, R. ( 2015 ). Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study. Journal of Geophysical Research: Space Physics, 120, 10,926 – 10,944. https://doi.org/10.1002/2015JA021605
dc.identifier.citedreferenceFang, X., Ma, Y., Masunaga, K., Dong, Y., Brain, D., Halekas, J., Lillis, R., Jakosky, B., Connerney, J., Grebowsky, J., & Dong, C. ( 2017 ). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 122, 4117 – 4137. https://doi.org/10.1002/2016JA023509
dc.identifier.citedreferenceGurnett, D. A., Kirchner, D., Huff, R., Morgan, D., Persoon, A., Averkamp, T., Duru, F., Nielsen, E. E., Safaeinili, A., Plaut, J., & Picardi, G. ( 2005 ). Radar soundings of the ionosphere of Mars. Science, 310, 1999 – 1933.
dc.identifier.citedreferenceHaider, S. A., Abdu, M. A., Batista, I. S., Sobral, J. H., Kallio, E., Maguire, W. C., & Verigin, M. I. ( 2009 ). On the responses to solar X‐ray flare and coronal mass ejection in the ionospheres of Mars and Earth. Geophysical Research Letters, 36, L13104. https://doi.org/10.1029/2009GL038694
dc.identifier.citedreferenceHaider, S. A., McKenna‐Lawlor, S. M. P., Fry, C. D., Jain, R., & Joshipura, K. N. ( 2012 ). Effects of solar X‐ray flares in the E region ionosphere of Mars: First model results. Journal of Geophysical Research, 117, A05326. https://doi.org/10.1029/2011JA017436
dc.identifier.citedreferenceJakosky, B., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., Baker, D., Bartlett, R., Benna, M., Bougher, S., Brain, D., Carson, D., Cauffman, S., Chamberlin, P., Chaufray, J.‐Y., Cheatom, O., Clarke, J., Connerney, J., Cravens, T., Curtis, D., Delory, G., Demcak, S., DeWolfe, A., Eparvier, F., Ergun, R., Eriksson, A., Espley, J., Fang, X., Folta, D., Fox, J., Gomez‐Rosa, C., Habenicht, S., Halekas, J., Holsclaw, G., Houghton, M., Howard, R., Jarosz, M., Jedrich, N., Johnson, M., Kasprzak, W., Kelley, M., King, T., Lankton, M., Larson, D., Leblanc, F., Lefevre, F., Lillis, R., Mahaffy, P., Mazelle, C., McClintock, W., McFadden, J., Mitchell, D. L., Montmessin, F., Morrissey, J., Peterson, W., Possel, W., Sauvaud, J.‐A., Schneider, N., Sidney, W., Sparacino, S., Stewart, A. I. F., Tolson, R., Toublanc, D., Waters, C., Woods, T., Yelle, R., & Zurek, R. ( 2015 ). The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Review, 195, 3 – 48. https://doi.org/10.1007/s11214-015-0139-x
dc.identifier.citedreferenceLee, C. O., Jakosky, B. M., Luhmann, J. G., Brain, D. A., Mays, M. L., Hassler, D. M., Holmström, M., Larson, D. E., Mitchell, D. L., Mazelle, C., & Halekas, J. S. ( 2018 ). Observations and impacts of the 10 September 2017 solar events at Mars: An overview and synthesis of the initial results. Geophysical Research Letters, 45, 8871 – 8885. https://doi.org/10.1029/2018GL079162
dc.identifier.citedreferenceLiu, H., Luhr, H., Watanabe, S., Kohler, W., & Manoj, C. ( 2007 ). Contrasting behavior of the thermosphere and ionosphere in response to the 28 October 2003 solar flare. Journal of Geophysical Research, 112, A07305. https://doi.org/10.1029/2007JA012313
dc.identifier.citedreferenceLollo, A., Withers, P., Fallows, K., Girazian, Z., Matta, M., & Chamberlin, P. C. ( 2012 ). Numerical simulations of the ionosphere of Mars during a solar flare. Journal of Geophysical Research, 117, A05314. https://doi.org/10.1029/2011JA017399
dc.identifier.citedreferenceMahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., & Jakosky, B. M. ( 2015 ). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 42, 8951 – 8957. https://doi.org/10.1002/2015GL065329
dc.identifier.citedreferenceMahaffy, P., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., Holmes, V., Johnson, C. S., Kellogg, J., Kimvilakani, P., Lefavor, M., Hengemihle, J., Jaeger, F., Lyness, E., Maurer, J., Melak, A., Noreiga, F., Noriega, M., Patel, K., Prats, B., Raaen, E., Tan, F., Weidner, E., Gundersen, C., Battel, S., Block, B. P., Arnett, K., Miller, R., Cooper, C., Edmonson, C., & Nolan, J. T. ( 2014 ). The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission. Space Science Review, 195, 49 – 73. https://doi.org/10.1007/s11214-014-0091-1
dc.identifier.citedreferenceMahajan, K. K., Neelesh, K. L., & Singh, S. ( 2009 ). Ionospheric effects of solar flares at Mars. Geophysical Research Letters, 36, L15207. https://doi.org/10.1029/2009GL039454
dc.identifier.citedreferenceNielsen, E., Zou, H., Gurnett, D. A., Kirchner, D. L., Morgan, D. D., Huff, R., Orosei, R., Safaeinili, A., Plaut, J. J., & Picardi, G. ( 2006 ). Observations of vertical reflections from the topside Martian ionosphere. Space Science Review, 126, 373 – 388. https://doi.org/10.1007/s11214-006-9113-y
dc.identifier.citedreferencePawlowski, D., & Ridley, A. ( 2008 ). Modeling the thermospheric response to solar flares. Journal of Geophysical Research, 113, A10309. https://doi.org/10.1029/2008JA013182
dc.identifier.citedreferencePawlowski, D., & Ridley, A. ( 2011 ). The effects of different solar flare characteristics on the global thermosphere. Journal of Atmospheric and Terrestrial Physics, 73, 1840 – 1848. https://doi.org/10.1016/j.jastp.2011.04.004
dc.identifier.citedreferencePutzig, N. E., Mellon, M. T., Kretke, K. A., & Arvidson, R. E. ( 2005 ). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173 ( 2 ), 325 – 341. https://doi.org/10.1016/j.icarus.2004.08.017
dc.identifier.citedreferenceQian, L., Burns, A. G., Chamberlin, P. C., & Solomon, S. C. ( 2011 ). Variability of thermosphere and ionosphere responses to solar flares. Journal of Geophysical Research, 116, A10309. https://doi.org/10.1029/2011JA016777
dc.identifier.citedreferenceRidley, A., Deng, Y., & Toth, G. ( 2006 ). The Global Ionosphere‐Thermosphere Model. Journal of Atmospheric and Solar‐Terrestrial Physics, 68, 839 – 864.
dc.identifier.citedreferenceThiemann, E. M. B., Andersson, L., Lillis, R., Withers, P., Xu, S., Elrod, M., Jain, S., Pilinski, M. D., Pawlowski, D., Chamberlin, P. C., Eparvier, F. G., Benna, M., Fowler, C., Curry, S., Peterson, W. K., & Deighan, J. ( 2018 ). The Mars topside ionosphere response to the X8.2 solar flare of 10 September 2017. Geophysical Research Letters, 45, 8005 – 8013. https://doi.org/10.1029/2018GL077730
dc.identifier.citedreferenceThiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. ( 2017 ). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122, 2748 – 2767. https://doi.org/10.1002/2016JA023512
dc.identifier.citedreferenceThiemann, E. M. B., Eparvier, F. G., Andersson, L. A., Fowler, C. M., Peterson, W. K., Mahaffy, P. R., England, S. L., Larson, D. E., Lo, D. Y., Schneider, N. M., Deighan, J. I., McClintock, W. E., & Jakosky, B. M. ( 2015 ). Neutral density response to solar flares at Mars. Geophysical Research Letters, 42, 8986 – 8992. https://doi.org/10.1002/2015GL066334
dc.identifier.citedreferenceXu, S., Thiemann, E., Mitchell, D., Eparvier, F., Pawlowski, D., Benna, M., Andersson, L., Liemohn, M. W., Bougher, S., Mazelle, C., & Geophysical Research Letters ( 2018 ). Observations and modeling of the Mars low‐altitude ionospheric response to the 10 September 2017 X‐Class solar flare. Geophysical Research Letters, 45, 7382 – 7390. https://doi.org/10.1029/2018GL078524
dc.identifier.citedreferenceZurek, R. W., Tolson, R. A., Bougher, S. W., Lugo, R. A., Baird, D. T., Bell, J. M., & Jakosky, B. M. ( 2017 ). Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research: Space Physics, 122, 3798 – 3814. https://doi.org/10.1002/2016JA023641
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.