Show simple item record

Effects of land‐cover changes on the partitioning of surface energy and water fluxes in Amazonia using high‐resolution satellite imagery

dc.contributor.authorOliveira, Gabriel
dc.contributor.authorBrunsell, Nathaniel A.
dc.contributor.authorMoraes, Elisabete C.
dc.contributor.authorShimabukuro, Yosio E.
dc.contributor.authorSantos, Thiago V.
dc.contributor.authorRandow, Celso
dc.contributor.authorAguiar, Renata G.
dc.contributor.authorAragao, Luiz E.O.C.
dc.date.accessioned2019-10-30T15:30:57Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-10-30T15:30:57Z
dc.date.issued2019-09
dc.identifier.citationOliveira, Gabriel; Brunsell, Nathaniel A.; Moraes, Elisabete C.; Shimabukuro, Yosio E.; Santos, Thiago V.; Randow, Celso; Aguiar, Renata G.; Aragao, Luiz E.O.C. (2019). "Effects of land‐cover changes on the partitioning of surface energy and water fluxes in Amazonia using high‐resolution satellite imagery." Ecohydrology 12(6): n/a-n/a.
dc.identifier.issn1936-0584
dc.identifier.issn1936-0592
dc.identifier.urihttps://hdl.handle.net/2027.42/151879
dc.description.abstractSpatial variability of surface energy and water fluxes at local scales is strongly controlled by soil and micrometeorological conditions. Thus, the accurate estimation of these fluxes from space at high spatial resolution has the potential to improve prediction of the impact of land‐use changes on the local environment. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Large‐Scale Biosphere‐Atmosphere Experiment in Amazonia (LBA) data were used to examine the partitioning of surface energy and water fluxes over different land‐cover types in one wet year (2004) and one drought year (2005) in eastern Rondonia state, Brazil. The spatial variation of albedo, net radiation (Rn), soil (G) and sensible (H) heat fluxes, evapotranspiration (ET), and evaporative fraction (EF) were primarily related to the lower presence of forest (primary [PF] or secondary [SF]) in the western side of the Ji‐Parana River in comparison with the eastern side, located within the Jaru Biological Reserve protected area. Water limitation in this part of Amazonia tends to affect anthropic (pasture [PA] and agriculture [AG]) ecosystems more than the natural land covers (PF and SF). We found statistically significant differences on the surface fluxes prior to and ~1 year after the deforestation. Rn over forested areas is ~10% greater in comparison with PA and AG. Deforestation and consequent transition to PA or AG increased the total energy (~200–400%) used to heat the soil subsurface and raise air temperatures. These differences in energy partitioning contributed to approximately three times higher ET over forested areas in comparison with nonforested areas. The conversion of PF to AG is likely to have a higher impact in the local climate in this part of Amazonia when compared with the change to PA and SF, respectively. These results illustrate the importance of conserving secondary forest areas in Amazonia.
dc.publisherAGU
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAmazonia
dc.subject.otherevapotranspiration
dc.subject.otherland‐cover changes
dc.subject.otherspatial variation
dc.subject.otherASTER images
dc.titleEffects of land‐cover changes on the partitioning of surface energy and water fluxes in Amazonia using high‐resolution satellite imagery
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151879/1/eco2126_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151879/2/eco2126.pdf
dc.identifier.doi10.1002/eco.2126
dc.identifier.sourceEcohydrology
dc.identifier.citedreferenceWright, I. R., Gash, J. H. C., Da Rocha, H. R., Shuttleworth, W. J., Nobre, C. A., Maitelli, G. T., … Carvalho, P. R. A. ( 1992 ). Dry season micrometeorology of central Amazonian ranchland. The Quarterly Journal of the Royal Meteorological Society, 118, 1083 – 1099. https://doi.org/10.1002/qj.49711850804
dc.identifier.citedreferenceRocha, H. R., Goulden, M. L., Miller, S. D., Menton, M. C., Pinto, L. D., & Freitas, H. C. ( 2004 ). Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecological Applications, 14, 22 – 32. https://doi.org/10.1890/02‐6001
dc.identifier.citedreferenceRuhoff, A. L., Paz, A. R., Aragao, L. E. O. C., Mu, Q., Malhi, Y., Collischonn, W., … Running, S. W. ( 2013 ). Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 58, 1658 – 1676. https://doi.org/10.1080/02626667.2013.837578
dc.identifier.citedreferenceSaleska, S. R., Didan, K., Huete, A. R., & Rocha, H. R. ( 2007 ). Amazon forests green‐up during 2005 drought. Science, 318, 612 – 612. https://doi.org/10.1126/science.1146663
dc.identifier.citedreferenceSampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares‐Filho, B. S., & Cardoso, M. ( 2007 ). Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, 34, 1 – 7.
dc.identifier.citedreferenceSantos, C. A. G., da Silva, R. M., Silva, A. M., & Neto, R. M. B. ( 2017 ). Estimation of evapotranspiration for different land covers in a Brazilian semi‐arid region: A case study of the Brígida River basin, Brazil. Journal of South American Earth Sciences, 74, 54 – 66. https://doi.org/10.1016/j.jsames.2017.01.002
dc.identifier.citedreferenceSantos, C. C. D., Nascimento, R. L., Rao, T. V. R., & Manzi, A. O. ( 2011 ). Net radiation estimation under pasture and forest in Rondonia, Brazil, with TM Landsat 5 images. Atmosfera, 24, 435 – 446.
dc.identifier.citedreferenceSchuurmans, J. M., Van Geer, F. C., & Bierkens, M. F. P. ( 2011 ). Remotely sensed latent heat fluxes for model error diagnosis: A case study. Hydrology and Earth System Sciences, 15, 759 – 769. https://doi.org/10.5194/hess‐15‐759‐2011
dc.identifier.citedreferenceScott, R. L., Watts, C., Payan, J. G., Edwards, E., Goodrich, D. C., Williams, D., & Shuttleworth, W. J. ( 2003 ). The understory and overstory partitioning of energy and water fluxes in an open canopy, semiarid woodland. Agricultural and Forest Meteorology, 114, 127 – 139. https://doi.org/10.1016/S0168‐1923(02)00197‐1
dc.identifier.citedreferenceSenay, G. B., Budde, M., Verdin, J. P., & Melesse, A. M. ( 2007 ). A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors, 7, 979 – 1000. https://doi.org/10.3390/s7060979
dc.identifier.citedreferenceShuttleworth, W. J. ( 1989 ). Micrometeorology of temperate and tropical forest. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 324, 299 – 334. https://doi.org/10.1098/rstb.1989.0050
dc.identifier.citedreferenceSommer, R., Sa, L. D., Vielhauer, K., Araujo, A. C., Folster, H., & Vlek, P. L. ( 2002 ). Transpiration and canopy conductance of secondary vegetation in the eastern Amazon. Agricultural and Forest Meteorology, 112, 103 – 121. https://doi.org/10.1016/S0168‐1923(02)00044‐8
dc.identifier.citedreferenceSong, X. P., Huang, C., Saatchi, S. S., Hansen, M. C., & Townshend, J. R. ( 2015 ). Annual carbon emissions from deforestation in the Amazon Basin between 2000 and 2010. PLoS ONE, 10, 1 – 21.
dc.identifier.citedreferenceSouza Filho, J. D. C., Ribeiro, A., Costa, M. H., Cohen, J. C. P., & Rocha, E. J. P. ( 2006 ). Seasonal variation of the radiation balance in a northeast Amazonian rainforest. Brazilian Journal of Meteorology, 3, 318 – 330.
dc.identifier.citedreferenceSouza, P. J. D. O. P., Rocha, E. J. P. D., Ribeiro, A., & Souza, E. B. D. ( 2010 ). Radiation balance in a soybean ecosystem in the Amazon. Brazilian Agronomic Science Journal, 41, 582 – 592.
dc.identifier.citedreferenceStark, S. C., Breshears, D. D., Garcia, E. S., Law, D. J., Minor, D. M., Saleska, S. R., … Borma, L. S. ( 2016 ). Toward accounting for ecoclimate teleconnections: Intra‐ and inter‐continental consequences of altered energy balance after vegetation change. Landscape Ecology, 31, 181 – 194. https://doi.org/10.1007/s10980‐015‐0282‐5
dc.identifier.citedreferenceSwann, A. L., Fung, I. Y., & Chiang, J. C. ( 2012 ). Mid‐latitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences, 109, 712 – 716. https://doi.org/10.1073/pnas.1116706108
dc.identifier.citedreferenceTang, R., Li, Z. L., Chen, K. S., Jia, Y., Li, C., & Sun, X. ( 2013 ). Spatial‐scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agricultural and Forest Meteorology, 174, 28 – 42.
dc.identifier.citedreferenceTimmermans, W. J., Kustas, W. P., Anderson, M. C., & French, A. N. ( 2007 ). An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two‐source energy balance (TSEB) modeling schemes. Remote Sensing of Environment, 108, 369 – 384. https://doi.org/10.1016/j.rse.2006.11.028
dc.identifier.citedreferencevon Randow, C., Manzi, A. O., Kruijt, B., De Oliveira, P. J., Zanchi, F. B., Silva, R. L., … Cardoso, F. L. ( 2004 ). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78, 5 – 26.
dc.identifier.citedreferenceWebler, A. D., Gomes, J. B., Aguiar, R. G., De Andrade, N. L., & Aguiar, L. J. ( 2013 ). Changes in land use and energy partitioning in the southwest of the Amazon. Brazilian Journal of Agricultural and Environmental Engineering., 17, 868 – 876.
dc.identifier.citedreferenceYamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., & Pniel, M. ( 1998 ). Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062 – 1071. https://doi.org/10.1109/36.700991
dc.identifier.citedreferenceYang, J. Y., Mei, X. R., Huo, Z. G., Yan, C. R., Hui, J. U., Zhao, F. H., & Qin, L. I. U. ( 2015 ). Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang‐Huai‐Hai Plain, China. Journal of Integrative Agriculture, 14, 2065 – 2076. https://doi.org/10.1016/S2095‐3119(14)60951‐5
dc.identifier.citedreferenceYang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., … Simmons, C. T. ( 2016 ). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6, 1 – 8.
dc.identifier.citedreferenceYang, Y., Shang, S., & Jiang, L. ( 2012 ). Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agricultural and Forest Meteorology, 164, 112 – 122. https://doi.org/10.1016/j.agrformet.2012.05.011
dc.identifier.citedreferenceZanchi, F. B., Waterloo, M. J., Tapia, A. P., Alvarado Barrientos, M. S., Bolson, M. A., Luizão, F. J., … Dolman, A. J. ( 2015 ). Water balance, nutrient and carbon export from a heath forest catchment in central Amazonia, Brazil. Hydrological Processes, 29, 3633 – 3648. https://doi.org/10.1002/hyp.10458
dc.identifier.citedreferenceZeng, N., Yoon, J. H., Marengo, J. A., Subramaniam, A., Nobre, C. A., Mariotti, A., & Neelin, J. D. ( 2008 ). Causes and impacts of the 2005 Amazon drought. Environmental Research Letters, 3, 1 – 10.
dc.identifier.citedreferenceZeri, M., Sa, L. D., Manzi, A. O., Araujo, A. C., Aguiar, R. G., von Randow, C., … Nobre, C. A. ( 2014 ). Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia. PLoS ONE, 9, 1 – 12.
dc.identifier.citedreferenceZhang, Q., Cheng, Y. B., Lyapustin, A. I., Wang, Y., Xiao, X., Suyker, A., … Middleton, E. M. ( 2014 ). Estimation of crop gross primary production (GPP): I. Impact of MODIS observation footprint and impact of vegetation BRDF characteristics. Agricultural and Forest Meteorology, 191, 51 – 63. https://doi.org/10.1016/j.agrformet.2014.02.002
dc.identifier.citedreferenceAbrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., & Kargel, J. ( 2015 ). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. International Journal of Applied Earth Observation and Geoinformation, 38, 292 – 301. https://doi.org/10.1016/j.jag.2015.01.013
dc.identifier.citedreferenceAguiar, A. P. D., Câmara, G., & Escada, M. I. S. ( 2007 ). Spatial statistical analysis of land‐use determinants in the Brazilian Amazonia: Exploring intra‐regional heterogeneity. Ecological Modelling, 209, 169 – 188. https://doi.org/10.1016/j.ecolmodel.2007.06.019
dc.identifier.citedreferenceAguiar, L. J. G., Costa, J. M. N. D., Fisch, G. R., Aguiar, R. G., Costa, A. C. L. D., & Ferreira, W. P. M. ( 2011 ). Estimate of the atmospheric longwave radiation in forest and pasture areas in southwest Amazon. Brazilian Journal of Meteorology, 2, 211 – 224.
dc.identifier.citedreferenceAguiar, R. G., Manzi, A. O., Priante Filho, N., Sá, L. D., Cardoso, F. L., & von Randow, C. ( 2006 ). Mass and energy flux over tropical forest in the southwest Amazon. Brazilian Journal of Meteorology, 21, 248 – 257.
dc.identifier.citedreferenceAlbert, L. P., Wu, J., Prohaska, N., Camargo, P. B., Huxman, T. E., Tribuzy, E. S., … Oliveira Junior, R. C. ( 2018 ). Age‐dependent leaf physiology and consequences for crown‐scale carbon uptake during the dry season in an Amazon evergreen forest. The New Phytologist, 218, 1 – 15.
dc.identifier.citedreferenceAllen, R., Irmak, A., Trezza, R., Hendrickx, J. M., Bastiaanssen, W., & Kjaersgaard, J. ( 2011 ). Satellite‐based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25, 4011 – 4027. https://doi.org/10.1002/hyp.8408
dc.identifier.citedreferenceAlmeida, C. A. D., Coutinho, A. C., Esquerdo, J. C. D. M., Adami, M., Venturieri, A., Diniz, C. G., … Gomes, A. R. ( 2016 ). High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat‐5/TM and MODIS data. Acta Amazonica, 46, 291 – 302. https://doi.org/10.1590/1809‐4392201505504
dc.identifier.citedreferenceAlvalá, R. D. S., Gielow, R., Da Rocha, H. R., Freitas, H. C., Lopes, J. M., Manzi, A. O., … Waterloo, M. J. ( 2002 ). Intradiurnal and seasonal variability of soil temperature, heat flux, soil moisture content, and thermal properties under forest and pasture in Rondonia. Journal of Geophysical Research‐Atmospheres, 107, 1 – 10.
dc.identifier.citedreferenceAlves, D. S., Morton, D. C., Batistella, M., Roberts, D. A., & Souza, C. Jr. ( 2009 ). The changing rates and patterns of deforestation and land use in Brazilian Amazonia. In M. Keller, M. Bustamante, & P. S. Gash, Dias, Jr. (Eds.), Amazonia and global change (pp. 11 – 23 ). Washington: AGU.
dc.identifier.citedreferenceAndreae, M. O., Artaxo, P., Brandao, C., Carswell, F. E., Ciccioli, P., Costa, A. L., … Kabat, P. ( 2002 ). Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA‐EUSTACH experiments. Journal of Geophysical Research‐Atmospheres, 107, 1 – 33.
dc.identifier.citedreferenceAragao, L. E., Poulter, B., Barlow, J. B., Anderson, L. O., Malhi, Y., Saatchi, S., … Gloor, E. ( 2014 ). Environmental change and the carbon balance of Amazonian forests. Biological Reviews, 89, 913 – 931. https://doi.org/10.1111/brv.12088
dc.identifier.citedreferenceBastable, H. G., Shuttleworth, W. J., Dallarosa, R. L. G., Fisch, G., & Nobre, C. A. ( 1993 ). Observations of climate, albedo, and surface radiation over cleared and undisturbed Amazonian forest. International Journal of Climatology, 13, 783 – 796. https://doi.org/10.1002/joc.3370130706
dc.identifier.citedreferenceBastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. ( 1998 ). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212, 198 – 212.
dc.identifier.citedreferenceBastiaanssen, W. G. M. ( 2000 ). SEBAL‐based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229, 87 – 100. https://doi.org/10.1016/S0022‐1694(99)00202‐4
dc.identifier.citedreferenceBastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., & Van der Wal, T. ( 1998 ). A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation. Journal of Hydrology, 212, 213 – 229.
dc.identifier.citedreferenceBhattarai, N., Dougherty, M., Marzen, L. J., & Kalin, L. ( 2012 ). Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south‐eastern United States. Remote Sensing Letters., 3, 511 – 519. https://doi.org/10.1080/01431161.2011.632655
dc.identifier.citedreferenceBhattarai, N., Shaw, S. B., Quackenbush, L. J., Im, J., & Niraula, R. ( 2016 ). Evaluating five remote sensing based single‐source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. International Journal of Applied Earth Observation and Geoinformation, 49, 75 – 86. https://doi.org/10.1016/j.jag.2016.01.010
dc.identifier.citedreferenceBonan, G. B. ( 2008 ). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444 – 1449. https://doi.org/10.1126/science.1155121
dc.identifier.citedreferenceBorma, L. D. S., Da Rocha, H. R., Cabral, O. M., Von Randow, C., Collicchio, E., Kurzatkowski, D., … Rennó, C. D. ( 2009 ). Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia. Journal of Geophysical Research: Biogeosciences, 114, 1 – 12.
dc.identifier.citedreferenceBroedel, E., Tomasella, J., Cândido, L. A., & Randow, C. ( 2017 ). Deep soil water dynamics in an undisturbed primary forest in central Amazonia: Differences between normal years and the 2005 drought. Hydrological Processes, 31, 1749 – 1759. https://doi.org/10.1002/hyp.11143
dc.identifier.citedreferenceBrown, J. C., Jepson, W., & Price, K. P. ( 2004 ). Expansion of mechanized agriculture and land‐cover change in southern Rondonia, Brazil. Journal of Latin American Geography, 3, 96 – 102. https://doi.org/10.1353/lag.2005.0003
dc.identifier.citedreferenceButt, N., De Oliveira, P. A., & Costa, M. H. ( 2011 ). Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. Journal of Geophysical Research: Atmospheres, 116, 1 – 8.
dc.identifier.citedreferenceChristoffersen, B. O., Restrepo‐Coupe, N., Arain, M. A., Baker, I. T., Cestaro, B. P., Ciais, P., … van den Hurk, B. ( 2014 ). Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 191, 33 – 50. https://doi.org/10.1016/j.agrformet.2014.02.008
dc.identifier.citedreferenceCosta, M. H., & Foley, J. A. ( 1999 ). Trends in the hydrologic cycle of the Amazon Basin. Journal of Geophysical Research‐Atmospheres, 104, 14189 – 14198. https://doi.org/10.1029/1998JD200126
dc.identifier.citedreferenceCosta, M. H., Yanagi, S. N., Souza, P. J., Ribeiro, A., & Rocha, E. J. ( 2007 ). Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophysical Research Letters, 34, 1 – 4.
dc.identifier.citedreferenceCulf, A. D., Fisch, G., & Hodnett, M. G. ( 1995 ). The albedo of Amazonian forest and ranch land. Journal of Climate, 8, 1544 – 1554. https://doi.org/10.1175/1520‐0442(1995)008<1544:TAOAFA>2.0.CO;2
dc.identifier.citedreferenceDavidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F., Bustamante, M. M., … Munger, J. W. ( 2012 ). The Amazon Basin in transition. Nature, 481, 321 – 328. https://doi.org/10.1038/nature10717
dc.identifier.citedreferencede Oliveira, G., Brunsell, N. A., Moraes, E. C., Bertani, G., dos Santos, T. V., Shimabukuro, Y. E., & Aragao, L. E. ( 2016 ). Use of MODIS sensor images combined with reanalysis products to retrieve net radiation in Amazonia. Sensors, 16, 91 – 28.
dc.identifier.citedreferencede Oliveira, G., Brunsell, N. A., Moraes, E. C., Shimabukuro, Y. E., Bertani, G., dos Santos, T. V., & Aragao, L. E. ( 2017 ). Evaluation of MODIS‐based estimates of water‐use efficiency in Amazonia. International Journal of Remote Sensing, 38, 5291 – 5309. https://doi.org/10.1080/01431161.2017.1339924
dc.identifier.citedreferencede Oliveira, G., & Moraes, E. C. ( 2013 ). Validation of net radiation obtained through MODIS/TERRA data in Amazonia with LBA surface measurements. Acta Amazonica, 3, 353 – 364.
dc.identifier.citedreferenceEl‐Masri, B., Barman, R., Meiyappan, P., Song, Y., Liang, M., & Jain, A. K. ( 2013 ). Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model. Agricultural and Forest Meteorology, 182, 156 – 167.
dc.identifier.citedreferenceEltahir, E. A., & Bras, R. L. ( 1996 ). Precipitation recycling. Reviews of Geophysics, 34, 367 – 378. https://doi.org/10.1029/96RG01927
dc.identifier.citedreferenceEspindola, G. M., De Aguiar, A. P. D., Pebesma, E., Câmara, G., & Fonseca, L. ( 2012 ). Agricultural land use dynamics in the Brazilian Amazon based on remote sensing and census data. Applied Geography, 32, 240 – 252. https://doi.org/10.1016/j.apgeog.2011.04.003
dc.identifier.citedreferenceFeldpausch, T. R., Riha, S. J., Fernandes, E. C., & Wandelli, E. V. ( 2005 ). Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazonia. Earth Interactions, 9, 1 – 22. https://doi.org/10.1175/EI140.1
dc.identifier.citedreferenceFerreira, J., Sousa, A. M., Vitorino, M. I., De Souza, E. B., & Souza, P. J. O. P. ( 2013 ). Estimate of evapotranspiration in the eastern Amazon using SEBAL. Amazonian Journal of Agricultural and Environmental Sciences, 56, 33 – 39.
dc.identifier.citedreferenceFrench, A. N., Hunsaker, D. J., & Thorp, K. R. ( 2015 ). Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sensing of Environment, 158, 281 – 294. https://doi.org/10.1016/j.rse.2014.11.003
dc.identifier.citedreferenceFrench, A. N., Jacob, F., Anderson, M. C., Kustas, W. P., Timmermans, W., Gieske, A., … Prueger, J. ( 2005 ). Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment, 99, 55 – 65. https://doi.org/10.1016/j.rse.2005.05.015
dc.identifier.citedreferenceFrohn, R. C., & Hao, Y. ( 2006 ). Landscape metric performance in analyzing two decades of deforestation in the Amazon Basin of Rondonia, Brazil. Remote Sensing of Environment, 100, 237 – 251. https://doi.org/10.1016/j.rse.2005.10.026
dc.identifier.citedreferenceFujisada, H., Bailey, G. B., Kelly, G. G., Hara, S., & Abrams, M. J. ( 2005 ). Aster DEM performance. IEEE Transactions on Geoscience and Remote Sensing, 43, 2707 – 2714. https://doi.org/10.1109/TGRS.2005.847924
dc.identifier.citedreferenceGalvão, J. D. C., & Fisch, G. ( 2000 ). Energy balance in forest and pasture areas in Amazonia (Ji‐Parana, RO). Brazilian Journal of Meteorology, 2, 25 – 37.
dc.identifier.citedreferenceGash, J. H. C., Huntingford, C., Marengo, J. A., Betts, R. A., Cox, P. M., Fisch, G., … von Randow, C. ( 2004 ). Amazonian climate: Results and future research. Theoretical and Applied Climatology, 78, 187 – 193.
dc.identifier.citedreferenceGash, J. H. C., & Nobre, C. A. ( 1997 ). Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bulletin of the American Meteorological Society, 5, 823 – 830.
dc.identifier.citedreferenceGiambelluca, T. W. ( 2002 ). Hydrology of altered tropical forest. Hydrological Processes, 16, 1665 – 1669. https://doi.org/10.1002/hyp.5021
dc.identifier.citedreferenceGiambelluca, T. W., Hölscher, D., Bastos, T. X., Frazão, R. R., Nullet, M. A., & Ziegler, A. D. ( 1997 ). Observations of albedo and radiation balance over postforest land surfaces in the eastern Amazon Basin. Journal of Climate, 10, 919 – 928. https://doi.org/10.1175/1520‐0442(1997)010<0919:OOAARB>2.0.CO;2
dc.identifier.citedreferenceGiambelluca, T. W., Nullet, M. A., Ziegler, A. D., & Tran, L. ( 2000 ). Latent and sensible energy flux over deforested land surfaces in the eastern Amazon and northern Thailand. Singapore Journal of Tropical Geography, 21, 107 – 130. https://doi.org/10.1111/1467‐9493.00070
dc.identifier.citedreferenceGonçalves, L. G. G., Borak, J. S., Costa, M. H., Saleska, S. R., Baker, I., Restrepo‐Coupe, N., … Arain, M. A. ( 2013 ). Overview of the large‐scale biosphere–atmosphere experiment in Amazonia Data Model Intercomparison Project (LBA‐DMIP). Agricultural and Forest Meteorology, 182, 111 – 127.
dc.identifier.citedreferenceGowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. ( 2008 ). ET mapping for agricultural water management: Present status and challenges. Irrigation Science, 26, 223 – 237. https://doi.org/10.1007/s00271‐007‐0088‐6
dc.identifier.citedreferenceGuimberteau, M., Ciais, P., Ducharne, A., Boisier, J. P., Aguiar, A. P. D., Biemans, H., … Poveda, G. ( 2017 ). Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi‐model analysis with a new set of land‐cover change scenarios. Hydrology and Earth System Sciences, 210, 1455 – 1475.
dc.identifier.citedreferenceHais, M., & Kucera, T. ( 2009 ). The influence of topography on the forest surface temperature retrieved from Landsat TM, ETM+ and ASTER thermal channels. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 585 – 591. https://doi.org/10.1016/j.isprsjprs.2009.04.003
dc.identifier.citedreferenceHasler, N., & Avissar, R. ( 2007 ). What controls evapotranspiration in the Amazon Basin? Journal of Hydrometeorology, 8, 380 – 395. https://doi.org/10.1175/JHM587.1
dc.identifier.citedreferenceHemakumara, H. M., Chandrapala, L., & Moene, A. F. ( 2003 ). Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agricultural Water Management, 58, 109 – 122. https://doi.org/10.1016/S0378‐3774(02)00131‐2
dc.identifier.citedreferenceHenderson‐Sellers, A., Dickinson, R. E., Durbidge, T. B., Kennedy, P. J., McGuffie, K., & Pitman, A. J. ( 1993 ). Tropical deforestation: Modeling local‐to regional‐scale climate change. Journal of Geophysical Research‐Atmospheres, 98, 7289 – 7315. https://doi.org/10.1029/92JD02830
dc.identifier.citedreferenceHölscher, D., Sá, T. D. A., Bastos, T. X., Denich, M., & Fölster, H. ( 1997 ). Evaporation from young secondary vegetation in eastern Amazonia. Journal of Hydrology, 193, 293 – 305. https://doi.org/10.1016/S0022‐1694(96)03145‐9
dc.identifier.citedreferenceHutyra, L. R., Munger, J. W., Saleska, S. R., Gottlieb, E., Daube, B. C., Dunn, A. L., … Wofsy, S. C. ( 2007 ). Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. Journal of Geophysical Research – Biogeosciences, 112, 1 – 16.
dc.identifier.citedreferenceJipp, P. H., Nepstad, D. C., Cassel, D. K., & Carvalho, C. R. ( 1998 ). Deep soil moisture storage and transpiration in forests and pastures of seasonally‐dry Amazonia. Climatic Change, 39, 395 – 412. https://doi.org/10.1023/A:1005308930871
dc.identifier.citedreferenceKhand, K., Numata, I., Kjaersgaard, J., & Vourlitis, G. L. ( 2017 ). Dry season evapotranspiration dynamics over human‐impacted landscapes in the southern Amazon using the Landsat‐based METRIC model. Remote Sensing, 9, 1 – 20.
dc.identifier.citedreferenceKhanna, J., Medvigy, D., Fueglistaler, S., & Walko, R. ( 2017 ). Regional dry‐season climate changes due to three decades of Amazonian deforestation. Nature Climate Change, 7, 200 – 204. https://doi.org/10.1038/nclimate3226
dc.identifier.citedreferenceKimura, R., Bai, L., Fan, J., Takayama, N., & Hinokidani, O. ( 2007 ). Evapotranspiration estimation over the river basin of the Loess Plateau of China based on remote sensing. Journal of Arid Environments, 68, 53 – 65. https://doi.org/10.1016/j.jaridenv.2006.03.029
dc.identifier.citedreferenceLambin, E. F., Geist, H. J., & Lepers, E. ( 2003 ). Dynamics of land‐use and land‐cover change in tropical regions. Annual Review of Environment and Resources, 28, 205 – 241. https://doi.org/10.1146/annurev.energy.28.050302.105459
dc.identifier.citedreferenceLean, J., Button, C. B., Nobre, C. A., & Rowntree, P. R. ( 1996 ). The simulated impact of Amazonian deforestation on climate using measured ABRACOS vegetation characteristics. In J. H. C. Gash, C. A. Nobre, J. M. Roberts, & R. L. Victoria (Eds.), Amazonian deforestation and climate (pp. 549 – 576 ). Chichester: John Wiley & Sons.
dc.identifier.citedreferenceLi, Z. L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., … Zhang, X. ( 2009 ). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 9, 3801 – 3853. https://doi.org/10.3390/s90503801
dc.identifier.citedreferenceLiang, S. ( 2001 ). Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sensing of Environment, 76, 213 – 238. https://doi.org/10.1016/S0034‐4257(00)00205‐4
dc.identifier.citedreferenceLu, D., & Weng, Q. ( 2006 ). Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment., 104, 157 – 167. https://doi.org/10.1016/j.rse.2005.11.015
dc.identifier.citedreferenceMa, Y., Tsukamoto, O., Ishikawa, H., Su, Z., Menenti, M., Wang, J., & Wen, J. ( 2002 ). Determination of regional land surface heat flux densities over heterogeneous landscape of HEIFE integrating satellite remote sensing with field observation. Journal of the Meteorological Society of Japan, 80, 485 – 501. https://doi.org/10.2151/jmsj.80.485
dc.identifier.citedreferenceMaeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, T., Eamus, D., & Huete, A. ( 2017 ). Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics, 8, 439 – 454. https://doi.org/10.5194/esd‐8‐439‐2017
dc.identifier.citedreferenceMalhi, Y., Pegoraro, E., Nobre, A. D., Pereira, M. G. P., Grace, J., Culf, A. D., & Clement, R. ( 2002 ). Energy and water dynamics of a central Amazonian rain forest. Journal of Geophysical Research‐Atmospheres, 107, 1 – 45.
dc.identifier.citedreferenceMarengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., Sampaio de Oliveira, G., de Oliveira, R., … Brown, I. F. ( 2008 ). The drought of Amazonia in 2005. Journal of Climate, 21, 495 – 516. https://doi.org/10.1175/2007JCLI1600.1
dc.identifier.citedreferenceMoraes, E. C., Franchito, S. H., & Brahmananda Rao, V. ( 2004 ). Effects of biomass burning in Amazonia on climate: A numerical experiment with a statistical‐dynamical model. Journal of Geophysical Research‐Atmospheres, 109, 1 – 12.
dc.identifier.citedreferenceMorton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O., Arai, E., Espirito‐Santo, F., … Morisette, J. ( 2006 ). Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences, 103, 14637 – 14641. https://doi.org/10.1073/pnas.0606377103
dc.identifier.citedreferenceNobre, C. A., Sellers, P. J., & Shukla, J. ( 1991 ). Amazonian deforestation and regional climate change. Journal of Climate, 4, 957 – 988. https://doi.org/10.1175/1520‐0442(1991)004<0957:ADARCC>2.0.CO;2
dc.identifier.citedreferenceNumata, I., Khand, K., Kjaersgaard, J., Cochrane, M. A., & Silva, S. S. ( 2017 ). Evaluation of Landsat‐based METRIC modeling to provide high‐spatial resolution evapotranspiration estimates for Amazonian forests. Remote Sensing, 9, 1 – 19.
dc.identifier.citedreferencePaiva, C. M., Franca, G. B., Liu, W. T. H., & Rotunno Filho, O. C. ( 2011 ). A comparison of experimental energy balance components data and SEBAL model results in Dourados, Brazil. International Journal of Remote Sensing, 32, 1731 – 1745. https://doi.org/10.1080/01431161003623425
dc.identifier.citedreferencePanday, P. K., Coe, M. T., Macedo, M. N., Lefebvre, P., & Castanho, A. D. ( 2015 ). Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. Journal of Hydrology, 523, 822 – 829. https://doi.org/10.1016/j.jhydrol.2015.02.018
dc.identifier.citedreferenceParker, J. A., Kenyon, R. V., & Troxel, D. E. ( 1983 ). Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging, 2, 31 – 39. https://doi.org/10.1109/TMI.1983.4307610
dc.identifier.citedreferencePedlowski, M. A., Dale, V. H., Matricardi, E. A., & Silva Filho, E. P. ( 1997 ). Patterns and impacts of deforestation in Rondonia, Brazil. Landscape and Urban Planning, 38, 149 – 157. https://doi.org/10.1016/S0169‐2046(97)00030‐3
dc.identifier.citedreferencePriante‐Filho, N., Vourlitis, G. L., Hayashi, M. M. S., Nogueira, J. D. S., Campelo, J. H., Nunes, P. C., … Trienweiler, J. L. ( 2004 ). Comparison of the mass and energy exchange of a pasture and a mature transitional tropical forest of the southern Amazon Basin during a seasonal transition. Global Change Biology, 10, 863 – 876. https://doi.org/10.1111/j.1529‐8817.2003.00775.x
dc.identifier.citedreferenceReichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., … Grünwald, T. ( 2005 ). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11, 1424 – 1439. https://doi.org/10.1111/j.1365‐2486.2005.001002.x
dc.identifier.citedreferenceRestrepo‐Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, L. S., Christoffersen, B., … Fitzjarrald, D. R. ( 2013 ). What drives the seasonality of photosynthesis across the Amazon Basin? A cross‐site analysis of eddy flux tower measurements from the brasil flux network. Agricultural and Forest Meteorology, 182, 128 – 144.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.