Show simple item record

Stimulated grip strength measurement: Validation of a novel method for functional assessment

dc.contributor.authorHanwright, Philip J.
dc.contributor.authorRath, Jennifer L.
dc.contributor.authorGuionneau, Nicholas
dc.contributor.authorHarris, Thomas G.W
dc.contributor.authorSarhane, Karim A.
dc.contributor.authorKemp, Stephen W.P.
dc.contributor.authorHoke, Ahmet
dc.contributor.authorCederna, Paul S.
dc.contributor.authorTuffaha, Sami H.
dc.date.accessioned2019-10-30T15:31:04Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-10-30T15:31:04Z
dc.date.issued2019-10
dc.identifier.citationHanwright, Philip J.; Rath, Jennifer L.; Guionneau, Nicholas; Harris, Thomas G.W; Sarhane, Karim A.; Kemp, Stephen W.P.; Hoke, Ahmet; Cederna, Paul S.; Tuffaha, Sami H. (2019). "Stimulated grip strength measurement: Validation of a novel method for functional assessment." Muscle & Nerve 60(4): 437-442.
dc.identifier.issn0148-639X
dc.identifier.issn1097-4598
dc.identifier.urihttps://hdl.handle.net/2027.42/151883
dc.description.abstractBackgroundReliable measurement of functional recovery is critical in translational peripheral nerve regeneration research. Behavioral functional assessments such as volitional grip strength testing (vGST) are limited by inherent behavioral variability. Isometric tetanic force testing (ITFT) is highly reliable but precludes serial measurements. Combining elements of vGST and ITFT, stimulated grip strength testing (sGST) involves percutaneous median nerve stimulation to elicit maximal tetanic contraction of digital flexors, thereby allowing for consistent measurement of maximal grip strength.MethodsWe measured side‐to‐side equivalence of force using sGST, vGST, and ITFT to determine relative reliability and repeatability. We also performed weekly force measurements following median nerve repair.ResultssGST demonstrated greater reliability and inter‐trial repeatability than vGST and similar reliability to ITFT, with the added benefit of serial measurements.ConclusionssGST is a valid method for assessing functional recovery that addresses the limitations of the currently available modalities used in translational peripheral nerve regeneration research.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherperipheral nerve injury
dc.subject.otherfunctional assessment
dc.subject.othermotor reinnervation
dc.subject.othermuscle force testing
dc.subject.otherperipheral nerve regeneration
dc.titleStimulated grip strength measurement: Validation of a novel method for functional assessment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151883/1/mus26646.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151883/2/mus26646_am.pdf
dc.identifier.doi10.1002/mus.26646
dc.identifier.sourceMuscle & Nerve
dc.identifier.citedreferenceCicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994; 6 ( 4 ): 284 ‐ 290.
dc.identifier.citedreferenceBertelli JA, Mira JC. The grasping test: a simple behavioral method for objective quantitative assessment of peripheral nerve regeneration in the rat. J Neurosci Methods. 1995; 58 ( 1‐2 ): 151 ‐ 155.
dc.identifier.citedreferenceGaltrey CM, Fawcett JW. Characterization of tests of functional recovery after median and ulnar nerve injury and repair in the rat forelimb. J Peripher Nerv System. 2007; 12 ( 1 ): 11 ‐ 27.
dc.identifier.citedreferenceSantos AP, Suaid CA, Fazan VP, Barreira AA. Microscopic anatomy of brachial plexus branches in Wistar rats. Anat Rec (Hoboken). 2007; 290 ( 5 ): 477 ‐ 485.
dc.identifier.citedreferenceBontioti EN, Kanje M, Dahlin LB. Regeneration and functional recovery in the upper extremity of rats after various types of nerve injuries. J Peripher Nerv System. 2003; 8 ( 3 ): 159 ‐ 168.
dc.identifier.citedreferencePapalia I, Tos P, Stagno d’Alcontres F, Battiston B, Geuna S. On the use of the grasping test in the rat median nerve model: a re‐appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods. 2003; 127 ( 1 ): 43 ‐ 47.
dc.identifier.citedreferenceWeber RA, Proctor WH, Warner MR, Verheyden CN. Autotomy and the sciatic functional index. Microsurgery. 1993; 14 ( 5 ): 323 ‐ 327.
dc.identifier.citedreferenceCarr MM, Best TJ, Mackinnon SE, Evans PJ. Strain differences in autotomy in rats undergoing sciatic nerve transection or repair. Ann Plast Surg. 1992; 28 ( 6 ): 538 ‐ 544.
dc.identifier.citedreferenceDellon AL, Mackinnon SE. Sciatic nerve regeneration in the rat. Validity of walking track assessment in the presence of chronic contractures. Microsurgery. 1989; 10 ( 3 ): 220 ‐ 225.
dc.identifier.citedreferenceLee JY, Giusti G, Wang H, Friedrich PF, Bishop AT, Shin AY. Functional evaluation in the rat sciatic nerve defect model: a comparison of the sciatic functional index, ankle angles, and isometric tetanic force. Plast Reconstr Surg. 2013; 132 ( 5 ): 1173 ‐ 1180.
dc.identifier.citedreferenceTos P, Ronchi G, Nicolino S, et al. Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. J Neurosci Methods. 2008; 169 ( 1 ): 119 ‐ 127.
dc.identifier.citedreferenceWood MD, Kemp SW, Weber C, Borschel GH, Gordon T. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011; 193 ( 4 ): 321 ‐ 333.
dc.identifier.citedreferenceIrintchev A. Potentials and limitations of peripheral nerve injury models in rodents with particular reference to the femoral nerve. Ann Anat. 2011; 193 ( 4 ): 276 ‐ 285.
dc.identifier.citedreferenceFujiwara T, Matsuda K, Kubo T, et al. Axonal supercharging technique using reverse end‐to‐side neurorrhaphy in peripheral nerve repair: an experimental study in the rat model. J Neurosurg. 2007; 107 ( 4 ): 821 ‐ 829.
dc.identifier.citedreferenceVarejao AS, Meek MF, Ferreira AJ, Patricio JA, Cabrita AM. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods. 2001; 108 ( 1 ): 1 ‐ 9.
dc.identifier.citedreferenceKollitz KM, Giusti G, Friedrich PF, Bishop AT, Shin AY. Validation of isometric tetanic force as a measure of muscle recovery after nerve injury in the rabbit biceps. J Hand Surg Am. 2018; 43 ( 5 ): e481 ‐ e488.
dc.identifier.citedreferenceGiusti G, Kremer T, Willems WF, Friedrich PF, Bishop AT, Shin AY. Description and validation of isometric tetanic muscle force test in rabbits. Microsurgery. 2012; 32 ( 1 ): 35 ‐ 42.
dc.identifier.citedreferenceEvans PJ, Awerbuck DC, Mackinnon SE, Wade JA, McKee NH. Isometric contractile function following nerve grafting: a study of graft storage. Muscle Nerve. 1994; 17 ( 10 ): 1190 ‐ 1200.
dc.identifier.citedreferenceShin RH, Vathana T, Giessler GA, Friedrich PF, Bishop AT, Shin AY. Isometric tetanic force measurement method of the tibialis anterior in the rat. Microsurgery. 2008; 28 ( 6 ): 452 ‐ 457.
dc.identifier.citedreferenceCederna PS, Youssef MK, Asato H, Urbanchek MG, Kuzon WM Jr. Skeletal muscle reinnervation by reduced axonal numbers results in whole muscle force deficits. Plast Reconstr Surg. 2000; 105 ( 6 ): 2003 ‐ 2009. discussion 2010‐2011.
dc.identifier.citedreferenceHays SA, Khodaparast N, Sloan AM, et al. The isometric pull task: a novel automated method for quantifying forelimb force generation in rats. J Neurosci Methods. 2013; 212 ( 2 ): 329 ‐ 337.
dc.identifier.citedreferenceMeyers EC, Granja R, Solorzano BR, et al. Median and ulnar nerve injuries reduce volitional forelimb strength in rats. Muscle Nerve. 2017; 56 ( 6 ): 1149 ‐ 1154.
dc.identifier.citedreferenceBecker AM, Meyers E, Sloan A, Rennaker R, Kilgard M, Goldberg MP. An automated task for the training and assessment of distal forelimb function in a mouse model of ischemic stroke. J Neurosci Methods. 2016; 258: 16 ‐ 23.
dc.identifier.citedreferenceBarton MJ, StJohn J, Tatian A, Riches JD, Mograby O, Mahns DA. Morphologic and morphometric analysis of the distal branches of the rat brachial plexus. Ital J Anat Embryol. 2016; 121 ( 3 ): 240 ‐ 252.
dc.identifier.citedreferencePapalia I, Tos P, Scevola A, Raimondo S, Geuna S. The ulnar test: a method for the quantitative functional assessment of posttraumatic ulnar nerve recovery in the rat. J Neurosci Methods. 2006; 154 ( 1‐2 ): 198 ‐ 203.
dc.identifier.citedreferenceLopez J, Quan A, Budihardjo J, et al. Growth hormone improves nerve regeneration, muscle re‐innervation, and functional outcomes after chronic denervation injury. Sci Rep. 2019; 9 ( 1 ): 3117.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.