Show simple item record

Saturn’s Ionosphere: Electron Density Altitude Profiles and Dâ Ring Interaction From The Cassini Grand Finale

dc.contributor.authorHadid, L. Z.
dc.contributor.authorMorooka, M. W.
dc.contributor.authorWahlund, J.‐e.
dc.contributor.authorPersoon, A. M.
dc.contributor.authorAndrews, D. J.
dc.contributor.authorShebanits, O.
dc.contributor.authorKurth, W. S.
dc.contributor.authorVigren, E.
dc.contributor.authorEdberg, N. J. T.
dc.contributor.authorNagy, A. F.
dc.contributor.authorEriksson, A. I.
dc.date.accessioned2019-10-30T15:31:16Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:31:16Z
dc.date.issued2019-08-28
dc.identifier.citationHadid, L. Z.; Morooka, M. W.; Wahlund, J.‐e. ; Persoon, A. M.; Andrews, D. J.; Shebanits, O.; Kurth, W. S.; Vigren, E.; Edberg, N. J. T.; Nagy, A. F.; Eriksson, A. I. (2019). "Saturn’s Ionosphere: Electron Density Altitude Profiles and Dâ Ring Interaction From The Cassini Grand Finale." Geophysical Research Letters 46(16): 9362-9369.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/151893
dc.description.abstractWe present the electron density (ne) altitude profiles of Saturn’s ionosphere at nearâ equatorial latitudes from all 23 orbits of Cassini’s Grand Finale. The data are collected by the Langmuir probe part of the Radio and Plasma Wave Science investigation. A high degree of variability in the electron density profiles is observed. However, organizing them by consecutive altitude ranges revealed clear differences between the southern and northern hemispheres. The ne profiles are shown to be more variable and connected to the Dâ ring below 5,000 km in the southern hemisphere compared to the northern hemisphere. This observed variability is explained to be a consequence of an electrodynamic interaction with the Dâ ring. Moreover, a density altitude profile is constructed for the northern hemisphere indicating the presence of three different ionospheric layers. Similar properties were observed during Cassini’s final plunge, where the main ionospheric peak is crossed at â ¼1,550â km altitude.Plain Language SummaryThe Cassini Langmuir probe measured directly the uppermost layer of Saturn’s atmosphere, the ionosphere, during its Grand Finale. The observations revealed a layered electron density altitude profile with evidence in the southern hemisphere of an electrodynamic type of interaction with the planet innermost Dâ ring. Moreover, the main peak of the ionosphere is observed for the first time in the final plunge around 1,550 km.Key PointsCassini RPWS observations during the Grand Finale show an electrodynamic type of interaction between the topside ionosphere and the Dâ ring in the southern hemisphereA layered electron density profile is observed, characterized by at least a diffusive and a chemical equilibrium regionThe main ionospheric peak is observed around 1,550 km in the final plunge
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.titleSaturn’s Ionosphere: Electron Density Altitude Profiles and Dâ Ring Interaction From The Cassini Grand Finale
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151893/1/grl57625.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151893/2/grl57625_am.pdf
dc.identifier.doi10.1029/2018GL078004
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSchunk, R. W., & Nagy, A. F. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry (2nd ed.). Cambridge Atmospheric and Space Science Series. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceHolmberg, M. K. G., Wahlund, J.â E., Morooka, M. W., & Persoon, A. M. ( 2012 ). Ion densities and velocities in the inner plasma torus of Saturn. Planetary and Space Science, 73 ( 1 ), 151 â 160. https://doi.org/10.1016/j.pss.2012.09.016
dc.identifier.citedreferenceKaiser, M. L., Desch, M. D., & Connerney, J. E. P. ( 1984 ). Saturn’s ionosphere: Inferred electron densities. Journal of Geophysical Research, 89, 2371 â 2376. https://doi.org/10.1029/JA089iA04p02371
dc.identifier.citedreferenceKliore, A. J., Lindal, G. F., Patel, I. R., Sweetnam, D. N., Hotz, H. B., & Mcdonough, T. R. ( 1980 ). Vertical structure of the ionosphere and upper neutral atmosphere of Saturn from the pioneer radio occultation. Science, 207 ( 4429 ), 446 â 449. https://doi.org/10.1126/science.207.4429.446
dc.identifier.citedreferenceKliore, A. J., Nagy, A., Asmar, S., Anabtawi, A., Barbinis, E., Fleischman, D., et al. ( 2014 ). The ionosphere of Saturn as observed by the Cassini radio science system. Geophysical Research Letter, 41, 5778 â 5782. https://doi.org/10.1002/2014GL060512
dc.identifier.citedreferenceKliore, A. J., Nagy, A. F., Marouf, E. A., Anabtawi, A., Barbinis, E., Fleischman, D. U., & Kahan, D. S. ( 2009 ). Midlatitude and highâ latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations. Journal of Geophysical Research, 114 ( A4 ), A04315. https://doi.org/10.1029/2008JA013900
dc.identifier.citedreferenceLindal, G. F., Sweetnam, D. N., & Eshleman, V. R. ( 1985 ). The atmosphere of Saturnâ An analysis of the Voyager radio occultation measurements. The Astronomical Journal, 90, 1136 â 1146. https://doi.org/10.1086/113820
dc.identifier.citedreferenceMatcheva, K. I., Strobel, D. F., & Flasar, F. M. ( 2001 ). Interaction of gravity waves with ionospheric plasma: Implications for Jupiter’s ionosphere. Icarus, 2 ( 152 ), 347 â 365. https://doi.org/10.1006/icar.2001.6631
dc.identifier.citedreferenceMitchell, D. G., Perry, M. E., Westlake, J. H., Kollmann, P., Smith, H. T., et al. ( 2018 ). Dust grains fall from Saturn’s Dâ ring into its equatorial upper atmosphere. Science, 362. https://doi.org/10.1126/science.aat2236
dc.identifier.citedreferenceMoore, L., Cravens, T. E., Müllerâ Wodarg, I., Perry, M. E., Waite, J. H. Jr., Perryman, R., et al. ( 2018 ). Models of Saturn’s equatorial ionosphere based on in situ data from Cassini’s Grand Finale. Geophysical Research Letters, 45, 9398 â 9407. https://doi.org/10.1029/2018GL078162
dc.identifier.citedreferenceMoore, L., Nagy, A. F., Kliore, A. J., Müllerâ Wodarg, I., Richardson, J. D., & Mendillo, M. ( 2006 ). Cassini radio occultations of Saturn’s ionosphere: Model comparisons using a constant water flux. Geophysical Research Letters, 33, L22202. https://doi.org/10.1029/2006GL027375
dc.identifier.citedreferenceMorooka, M. W., Wahlund, J.â E., Eriksson, A. I., Farrell, W. M., Gurnett, D. A., Kurth, W. S., et al. ( 2011 ). Dusty plasma in the vicinity of Enceladus. Journal of Geophysical Research, 116 ( A12 ), A12221. https://doi.org/10.1029/2011JA017038
dc.identifier.citedreferenceMorooka, M. W., Wahlund, J.â E., Hadid, L. Z., Eriksson, A. I., Edberg, N. J. T., Vigren E., et al. ( 2019 ). Saturn’s dusty ionosphere. Journal of Geophysical Research: Space Physics, 124, 1679 â 1697. https://doi.org/10.1029/2018JA026154
dc.identifier.citedreferenceNagy, A. F., Kliore, A. J., Marouf, E., French, R., Flasar, M., Rappaport, N. J., et al. ( 2006 ). First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft. Journal of Geophysical Research, 111, A06310. https://doi.org/10.1029/2005JA011519
dc.identifier.citedreferenceO’Donoghue, J., Stallard, T. S., Melin, H., Jones, G. H., Cowley, S. W. H., Miller, S., et al. ( 2013 ). The domination of Saturn’s lowâ latitude ionosphere by ring â rainâ . Nature Physics, 496, 193 â 195. https://doi.org/10.1038/nature12049
dc.identifier.citedreferencePersoon, A. M., Gurnett, D. A., Kurth, W. S., Hospodarsky, G. B., Groene, J. B., Canu, P., & Dougherty, M. K. ( 2005 ). Equatorial electron density measurements in Saturn’s inner magnetosphere. Geophysical Research Letters, 32, L23105. https://doi.org/10.1029/2005GL024294
dc.identifier.citedreferencePersoon, A. M., Kurth, W. S., Gurnett, D. A., Groene, J. B., Sulaiman, A. H., Wahlund, J.â E., et al. ( 2019 ). Electron density distributions in Saturn’s ionosphere. Geophysical Research Letters, 46, 3061 â 3065. https://doi.org/10.1029/2018GL078020
dc.identifier.citedreferenceShebanits, O., Wahlund, J.â E., Edberg, N. J. T., Crary, F. J., Wellbrock, A., Andrews, D. J., et al. ( 2016 ). Ion and aerosol precursor densities in Titan’s ionosphere: A multiâ instrument case study. Journal of Geophysical Research: Space Physics, 121, 10,075 â 10,090. https://doi.org/10.1002/2016JA022980
dc.identifier.citedreferenceShebanits, O., Wahlund, J.â E., Mandt, K., Ã gren, K., Edberg, N. J. T., & Waite, J. H. ( 2013 ). Negative ion densities in the ionosphere of Titanâ Cassini RPWS/LP results. Planetary and Space Science, 84, 153 â 162. https://doi.org/10.1016/j.pss.2013.05.021
dc.identifier.citedreferenceSulaiman, A. H., Kurth, W. S., Hospodarsky, G. B., Averkamp, T. F., Persoon, A. M., Menietti, J. D., et al. ( 2018 ). Auroral hiss emissions during Cassini’s Grand Finale: Diverse electrodynamic interactions between Saturn and its rings. Geophysical Research Letters, 45, 6782 â 6789. https://doi.org/10.1029/2018GL077875
dc.identifier.citedreferenceSulaiman, A. H., Kurth, W. S., Persoon, A. M., Menietti, J. D., Farrell, W. M., Ye, S.â Y., & Hadid, L. Z. ( 2017 ). Intense harmonic emissions observed in Saturn’s ionosphere. Geophysical Research Letters, 44, 12,049 â 12,056. https://doi.org/10.1002/2017GL076184
dc.identifier.citedreferenceVigren, E., Galand, M., Shebanits, O., Wahlund, J.â E., Geppert, W. D., Lavvas, P., et al. ( 2014 ). Increasing positive ion number densities below the peak of ionâ electron pair production in Titan’s ionosphere. The Astrophysical Journal, 786 ( 1 ), 69. https://doi.org/10.1088/0004-637X/786/1/6
dc.identifier.citedreferenceVigren, E., Galand, M., Yelle, R. V., Cui, J., Wahlund, J.â E., Ã gren, K., et al. ( 2013 ). On the thermal electron balance in Titan’s sunlit upper atmosphere. Icarus, 223 ( 1 ), 234 â 251. https://doi.org/10.1016/j.icarus.2012.12.010
dc.identifier.citedreferenceWahlund, J.â E., André, M., Eriksson, A. I. E., Lundberg, M., Morooka, M. W., Shafiq, M., et al. ( 2009 ). Detection of dusty plasma near the Eâ ring of Saturn. Planetary and Space Science, 14 ( 57 ), 1795 â 1806. https://doi.org/10.1016/j.pss.2009.03.011
dc.identifier.citedreferenceWahlund, Jâ E., Morooka, W. M., Hadid, L. Z., Persoon, A. M., Farrell, W. M., Gurnett, D. A., et al. ( 2017 ). In situ measurements of Saturn’s ionosphere show that it is dynamic and interacts with the rings. Science, 359, 66 â 68. https://doi.org/10.1126/science.aao4134
dc.identifier.citedreferenceWaite, J. H. Jr., Perryman, R., Perryman, R. S., Perry, M. E., Miller, K. E., Bell, J., Cravens, T. E. ( 2018 ). Chemical interactions between Saturn’s atmosphere and its rings. Science, 362. https://doi.org/10.1126/science.aat2382
dc.identifier.citedreferenceà gren, K., Wahlund, J.â E., Garnier, P., Modolo, R., Cui, J., Galand, M., & Mullerâ Wodarg, I. ( 2009 ). On the ionospheric structure of Titan. Planetary and Space Science, 57, 1821 â 1827. https://doi.org/10.1016/j.pss.2009.04.012
dc.identifier.citedreferenceà gren, K., Wahlund, J.â E., Modolo, R., Lummerzheim, D., Galand, M., Müllerâ Wodarg, I., et al. ( 2007 ). On magnetospheric electron impact ionisation and dynamics in Titan’s ramâ side and polar ionosphereâ A Cassini case study. Annales Geophysicae, 25, 2359 â 2369. https://doi.org/10.5194/angeo-25-2359-2007
dc.identifier.citedreferenceBurton, M. E., Dougherty, M. K., & Russell, C. T. ( 2010 ). Saturn’s internal planetary magnetic field. Geophysical Research Letters, 37, L24105. https://doi.org/10.1029/2010GL045148
dc.identifier.citedreferenceCravens, T. E., Moore, L., Waite, J. H. Jr, Perryman, R., Perry, M., Wahlund, J.â E., et al. ( 2019 ). The ion composition of Saturn’s equatorial Ionosphere as observed by Cassini. Geophysical Research Letters, 46. https://doi.org/10.1029/2018GL077868
dc.identifier.citedreferenceFischer, G., Gurnett, D. A., Zarka, P., Moore, L., & Dyudina, U. A. ( 2011 ). Peak electron densities in Saturn’s ionosphere derived from the lowâ frequency cutoff of Saturn lightning. Journal of Geophysical Research, 116, A04315. https://doi.org/10.1029/2010JA016187
dc.identifier.citedreferenceGurnett, D. A., Kurth, W. S., Hospodarsky, G. B., Persoon, A. M., Averkamp, T. F., Cecconi, B., et al. ( 2005 ). Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science, 5713 ( 307 ), 1255 â 1259. https://doi.org/10.1126/science.105356
dc.identifier.citedreferenceGurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., Averkamp, T. F., Zarka, P., et al. ( 2004 ). The Cassini radio and plasma wave investigation. Space Science Reviews, 114, 395 â 463. https://doi.org/10.1007/s11214-004-1434-0
dc.identifier.citedreferenceHadid, L. Z., Morooka, M. W., Wahlund, J.â E., Moore, L., Cravens, T. E., Hedman, M. M., et al. ( 2018 ). Ring shadowing effects on Saturn’s ionosphere: Implications for ring opacity and plasma transport. Geophysical Research Letters, 45, 10,084 â 10,092. https://doi.org/10.1029/2018GL079150
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.