Show simple item record

The future of canine glaucoma therapy

dc.contributor.authorKomáromy, András M.
dc.contributor.authorBras, Dineli
dc.contributor.authorEsson, Douglas W.
dc.contributor.authorFellman, Ronald L.
dc.contributor.authorGrozdanic, Sinisa D.
dc.contributor.authorKagemann, Larry
dc.contributor.authorMiller, Paul E.
dc.contributor.authorMoroi, Sayoko E.
dc.contributor.authorPlummer, Caryn E.
dc.contributor.authorSapienza, John S.
dc.contributor.authorStorey, Eric S.
dc.contributor.authorTeixeira, Leandro B.
dc.contributor.authorToris, Carol B.
dc.contributor.authorWebb, Terah R.
dc.date.accessioned2019-10-30T15:31:19Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-10-30T15:31:19Z
dc.date.issued2019-09
dc.identifier.citationKomáromy, András M. ; Bras, Dineli; Esson, Douglas W.; Fellman, Ronald L.; Grozdanic, Sinisa D.; Kagemann, Larry; Miller, Paul E.; Moroi, Sayoko E.; Plummer, Caryn E.; Sapienza, John S.; Storey, Eric S.; Teixeira, Leandro B.; Toris, Carol B.; Webb, Terah R. (2019). "The future of canine glaucoma therapy." Veterinary Ophthalmology 22(5): 726-740.
dc.identifier.issn1463-5216
dc.identifier.issn1463-5224
dc.identifier.urihttps://hdl.handle.net/2027.42/151896
dc.description.abstractCanine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO‐VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP‐lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.othersurgery
dc.subject.otheraqueous humor
dc.subject.othercanine
dc.subject.otherglaucoma
dc.subject.otherintraocular pressure
dc.subject.otheroptic nerve
dc.titleThe future of canine glaucoma therapy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOpthalmology and Vision Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151896/1/vop12678_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151896/2/vop12678.pdf
dc.identifier.doi10.1111/vop.12678
dc.identifier.sourceVeterinary Ophthalmology
dc.identifier.citedreferenceOliver J, Rustidge S, Pettitt L, et al. Evaluation of ADAMTS17 in Chinese Shar‐Pei with primary open‐angle glaucoma, primary lens luxation, or both. Am J Vet Res. 2018; 79: 98 ‐ 106.
dc.identifier.citedreferencePease ME, McKinnon SJ, Quigley HA, et al. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000; 41: 764 ‐ 774.
dc.identifier.citedreferenceKnox DL, Eagle RC Jr, Green WR. Optic nerve hydropic axonal degeneration and blocked retrograde axoplasmic transport: histopathologic features in human high‐pressure secondary glaucoma. Arch Ophthalmol. 2007; 125: 347 ‐ 353.
dc.identifier.citedreferenceSalinas‐Navarro M, Alarcon‐Martinez L, Valiente‐Soriano FJ, et al. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration. Exp Eye Res. 2010; 90: 168 ‐ 183.
dc.identifier.citedreferenceFahy ET, Chrysostomou V, Crowston JG. Mini‐review: impaired axonal transport and glaucoma. Curr Eye Res. 2016; 41: 273 ‐ 283.
dc.identifier.citedreferenceWard NJ, Ho KW, Lambert WS, et al. Absence of transient receptor potential vanilloid‐1 accelerates stress‐induced axonopathy in the optic projection. J Neurosci. 2014; 34: 3161 ‐ 3170.
dc.identifier.citedreferenceAgarwal R, Gupta SK, Agarwal P, et al. Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol. 2009; 57: 257 ‐ 266.
dc.identifier.citedreferenceFlammer J, Haefliger IO, Orgul S, et al. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999; 8: 212 ‐ 219.
dc.identifier.citedreferenceMichelson G, Langhans MJ, Harazny J, et al. Visual field defect and perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open‐angle glaucoma. Graefes Arch Clin Exp. 1998; 236: 80 ‐ 85.
dc.identifier.citedreferenceChung HS, Harris A, Kagemann L, et al. Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol. 1999; 83: 466 ‐ 469.
dc.identifier.citedreferenceGelatt KN, Miyabayashi T, Gelatt‐Nicholson KJ, et al. Progressive changes in ophthalmic blood velocities in Beagles with primary open angle glaucoma. Vet Ophthalmol. 2003; 6: 77 ‐ 84.
dc.identifier.citedreferenceGelatt‐Nicholson KJ, Gelatt KN, MacKay EO, et al. Comparative Doppler imaging of the ophthalmic vasculature in normal Beagles and Beagles with inherited primary open‐angle glaucoma. Vet Ophthalmol. 1999; 2: 97 ‐ 105.
dc.identifier.citedreferenceBrooks DE, Samuelson DA, Gelatt KN. Ultrastructural changes in laminar optic nerve capillaries of beagles with primary open‐angle glaucoma. Am J Vet Res. 1989; 50: 929 ‐ 935.
dc.identifier.citedreferenceMozaffarieh M, Grieshaber MC, Orgul S, et al. The potential value of natural antioxidative treatment in glaucoma. Surv Ophthalmol. 2008; 53: 479 ‐ 505.
dc.identifier.citedreferenceLiu Q, Ju WK, Crowston JG, et al. Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci. 2007; 48: 4580 ‐ 4589.
dc.identifier.citedreferenceWax MB, Tezel G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp Eye Res. 2009; 88: 825 ‐ 830.
dc.identifier.citedreferenceBell K, Gramlich OW, Von Thun Und Hohenstein‐Blaul N, et al. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retinal Eye Res. 2013; 36: 199 ‐ 216.
dc.identifier.citedreferencePumphrey SA, Pizzirani S, Pirie CG, et al. Western blot patterns of serum autoantibodies against optic nerve antigens in dogs with goniodysgenesis‐related glaucoma. Am J Vet Res. 2013; 74: 621 ‐ 628.
dc.identifier.citedreferenceBringmann A, Pannicke T, Grosche J, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006; 25: 397 ‐ 424.
dc.identifier.citedreferenceSon JL, Soto I, Oglesby E, et al. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia. 2010; 58: 780 ‐ 789.
dc.identifier.citedreferenceInman DM, Horner PJ. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia. 2007; 55: 942 ‐ 953.
dc.identifier.citedreferenceNeufeld AH, Liu B. Glaucomatous optic neuropathy: when glia misbehave. Neuroscientist. 2003; 9: 485 ‐ 495.
dc.identifier.citedreferenceFick CM, Dubielzig RR. Short posterior ciliary artery anatomy in normal and acutely glaucomatous dogs. Vet Ophthalmol. 2016; 19: 43 ‐ 49.
dc.identifier.citedreferenceHare WA, WoldeMussie E, Lai RK, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures. Invest Ophthalmol Vis Sci. 2004; 45: 2625 ‐ 2639.
dc.identifier.citedreferenceHare WA, WoldeMussie E, Weinreb RN, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: Structural measures. Invest Ophthalmol Vis Sci. 2004; 45: 2640 ‐ 2651.
dc.identifier.citedreferenceWoldeMussie E, Yoles E, Schwartz M, et al. Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma. 2002; 11: 474 ‐ 480.
dc.identifier.citedreferenceWeinreb RN, Liebmann JM, Cioffi GA, et al. Oral memantine for the treatment of glaucoma: design and results of 2 randomized, placebo‐controlled, phase 3 studies. Ophthalmology. 2018; 125: 1874 ‐ 1885.
dc.identifier.citedreferencePease ME, Zack DJ, Berlinicke C, et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009; 50: 2194 ‐ 2200.
dc.identifier.citedreferenceKallberg ME, Brooks DE, Komaromy AM, et al. The effect of an L‐type calcium channel blocker on the hemodynamics of orbital arteries in dogs. Vet Ophthalmol. 2003; 6: 141 ‐ 146.
dc.identifier.citedreferenceJutley G, Luk SM, Dehabadi MH, et al. Management of glaucoma as a neurodegenerative disease. Neurodegener Dis Manag. 2017; 7: 157 ‐ 172.
dc.identifier.citedreferenceBecker S, Eastlake K, Jayaram H, et al. Allogeneic transplantation of Müller‐derived retinal ganglion cells improves retinal function in a feline model of ganglion cell depletion. Stem Cells Transl Med. 2016; 5: 192 ‐ 205.
dc.identifier.citedreferenceBenowitz LI, He Z, Goldberg JL. Reaching the brain: advances in optic nerve regeneration. Exp Neurol. 2017; 287: 365 ‐ 373.
dc.identifier.citedreferenceLaha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain. Science. 2017; 356: 1031 ‐ 1034.
dc.identifier.citedreferenceGoldberg JL, Guido W, AGI Workshop Participants. Report on the National Eye Institute Audacious Goals Initiative: Regenerating the optic nerve. Invest Ophthalmol Vis Sci. 2016; 57: 1271 ‐ 1275.
dc.identifier.citedreferenceTanaka T, Yokoi T, Tamalu F, et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep. 2015; 5: 8344.
dc.identifier.citedreferenceMiller PE. The glaucomas. In: Maggs DJ, Miller PE, Ofri R eds. Slatter’s Fundamentals of Veterinary Ophthalmology. 5th edition. St. Louis, MO: Elsevier. 2013; 258.
dc.identifier.citedreferenceGelatt KN, MacKay EO. Prevalence of the breed‐related glaucomas in pure‐bred dogs in North America. Vet Ophthalmol. 2004; 7: 97 ‐ 111.
dc.identifier.citedreferenceGelatt KN, MacKay EO. Secondary glaucomas in the dog in North America. Vet Ophthalmol. 2004; 7: 245 ‐ 259.
dc.identifier.citedreferenceQuigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90: 262 ‐ 267.
dc.identifier.citedreferenceTham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta‐analysis. Ophthalmology. 2014; 121: 2081 ‐ 2090.
dc.identifier.citedreferenceNewbold GM, Kelch WJ, Chen T, et al. Phacoemulsification outcomes in Boston terriers as compared to non‐Boston terriers: a retrospective study (2002–2015). Vet Ophthalmol. 2018; 21: 353 ‐ 361.
dc.identifier.citedreferenceFoote BC, Pederson SL, Welihozkiy A, et al. Retinal detachment and glaucoma in the Boston Terrier and Shih Tzu following phacoemulsification (135 patients): 2000–2014. Vet Ophthalmol. 2018; 21: 240 ‐ 248.
dc.identifier.citedreferenceScott EM, Esson DW, Fritz KJ, et al. Major breed distribution of canine patients enucleated or eviscerated due to glaucoma following routine cataract surgery as well as common histopathologic findings within enucleated globes. Vet Ophthalmol. 2013; 16 ( Suppl 1 ): 64 ‐ 72.
dc.identifier.citedreferenceMoeller E, Blocker T, Esson D, et al. Postoperative glaucoma in the Labrador Retriever: incidence, risk factors, and visual outcome following routine phacoemulsification. Vet Ophthalmol. 2011; 14: 385 ‐ 394.
dc.identifier.citedreferenceSigle KJ, Nasisse MP. Long‐term complications after phacoemulsification for cataract removal in dogs: 172 cases (1995–2002). J Am Vet Med Assoc. 2006; 228: 74 ‐ 79.
dc.identifier.citedreferenceBiros DJ, Gelatt KN, Brooks DE, et al. Development of glaucoma after cataract surgery in dogs: 220 cases (1987–1998). J Am Vet Med Assoc. 2000; 216: 1780 ‐ 1786.
dc.identifier.citedreferenceLannek EB, Miller PE. Development of glaucoma after phacoemulsification for removal of cataracts in dogs: 22 cases (1987–1997). J Am Vet Med Assoc. 2001; 218: 70 ‐ 76.
dc.identifier.citedreferenceWeinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. J Am Med Assoc. 2014; 311: 1901 ‐ 1911.
dc.identifier.citedreferenceTsai S, Almazan A, Lee SS, et al. The effect of topical latanoprost on anterior segment anatomic relationships in normal dogs. Vet Ophthalmol. 2013; 16: 370 ‐ 376.
dc.identifier.citedreferenceTsai S, Miller PE, Struble C, et al. Topical application of 0.005% latanoprost increases episcleral venous pressure in normal dogs. Vet Ophthalmol. 2012; 15 ( Suppl 1 ): 71 ‐ 78.
dc.identifier.citedreferenceDubin AJ, Bentley E, Buhr KA, et al. Evaluation of potential risk factors for development of primary angle‐closure glaucoma in Bouviers des Flandres. J Am Vet Med Assoc. 2017; 250: 60 ‐ 67.
dc.identifier.citedreferenceGrozdanic SD, Kecova H, Harper MM, et al. Functional and structural changes in a canine model of hereditary primary angle‐closure glaucoma. Invest Ophthalmol Vis Sci. 2010; 51: 255 ‐ 263.
dc.identifier.citedreferenceHasegawa T, Kawata M, Ota M. Ultrasound biomicroscopic findings of the iridocorneal angle in live healthy and glaucomatous dogs. J Vet Med Sci. 2016; 77: 1625 ‐ 1631.
dc.identifier.citedreferenceKagemann L, Wollstein G, Ishikawa H, et al. Visualization of the conventional outflow pathway in the living human eye. Ophthalmology. 2012; 119: 1563 ‐ 1568.
dc.identifier.citedreferenceKagemann L, Wollstein G, Ishikawa H, et al. 3D visualization of aqueous humor outflow structures in‐situ in humans. Exp Eye Res. 2011; 93: 308 ‐ 315.
dc.identifier.citedreferenceAlmazan A, Tsai S, Miller PE, et al. Iridocorneal angle measurements in mammalian species: normative data by optical coherence tomography. Vet Ophthalmol. 2013; 16: 163 ‐ 166.
dc.identifier.citedreferenceSaito A, Kazama Y, Iwashita H, et al. Outcome of anterior chamber shunt procedure in 104 eyes of dogs (abstract). 48th Annual Conference of the American College of Veterinary Ophthalmologists. 2017; 41.
dc.identifier.citedreferenceMeier‐Gibbons F, Berlin MS, Toteberg‐Harms M. Twenty‐four hour intraocular pressure measurements and home tonometry. Curr Opin Ophthalmol. 2018; 29: 111 ‐ 115.
dc.identifier.citedreferenceKomaromy AM, Petersen‐Jones SM. Genetics of canine primary glaucomas. Vet Clin North Am Small Anim Pract. 2015; 45: 1159 ‐ 1182.
dc.identifier.citedreferenceGraham KL, McCowan C, White A. Genetic and biochemical biomarkers in canine glaucoma. Vet Pathol. 2017; 54: 194 ‐ 203.
dc.identifier.citedreferenceKrauss AH, Impagnatiello F, Toris CB, et al. Ocular hypotensive activity of BOL‐303259‐X, a nitric oxide donating prostaglandin F2alpha agonist, in preclinical models. Exp Eye Res. 2011; 93: 250 ‐ 255.
dc.identifier.citedreferenceBorghi V, Bastia E, Guzzetta M, et al. A novel nitric oxide releasing prostaglandin analog, NCX 125, reduces intraocular pressure in rabbit, dog, and primate models of glaucoma. J Ocul Pharmacol Ther. 2010; 26: 125 ‐ 132.
dc.identifier.citedreferenceImpagnatiello F, Borghi V, Gale DC, et al. A dual acting compound with latanoprost amide and nitric oxide releasing properties, shows ocular hypotensive effects in rabbits and dogs. Exp Eye Res. 2011; 93: 243 ‐ 249.
dc.identifier.citedreferenceCavet ME, DeCory HH. The role of nitric oxide in the intraocular pressure lowering efficacy of latanoprostene bunod: review of nonclinical studies. J Ocul Pharmacol Ther. 2017; 34: 52 ‐ 60.
dc.identifier.citedreferenceLin CW, Sherman B, Moore LA, et al. Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J Ocul Pharmacol Ther. 2017; 34: 40 ‐ 51.
dc.identifier.citedreferenceRao PV, Pattabiraman PP, Kopczynski C. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp Eye Res. 2017; 158: 23 ‐ 32.
dc.identifier.citedreferenceWang SK, Chang RT. An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol. 2014; 8: 883 ‐ 890.
dc.identifier.citedreferenceRao PV, Deng PF, Kumar J, et al. Modulation of aqueous humor outflow facility by the Rho kinase‐specific inhibitor Y‐27632. Invest Ophthalmol Vis Sci. 2001; 42: 1029 ‐ 1037.
dc.identifier.citedreferenceKiel JW, Kopczynski CC. Effect of AR‐13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015; 31: 146 ‐ 151.
dc.identifier.citedreferenceMiyagi H, Kim S, Li J, et al. Topical Rho‐associated kinase inhibitor, Y27632, accelerates corneal endothelial regeneration in a canine cryoinjury model. Cornea. 2019; 38: 352 ‐ 359.
dc.identifier.citedreferenceLewis RA, Levy B, Ramirez N, et al. Fixed‐dose combination of AR‐13324 and latanoprost: a double‐masked, 28‐day, randomised, controlled study in patients with open‐angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016; 100: 339 ‐ 344.
dc.identifier.citedreferenceOkeke CO, Quigley HA, Jampel HD, et al. Adherence with topical glaucoma medication monitored electronically the Travatan Dosing Aid study. Ophthalmology. 2009; 116: 191 ‐ 199.
dc.identifier.citedreferenceFriedman DS, Quigley HA, Gelb L, et al. Using pharmacy claims data to study adherence to glaucoma medications: methodology and findings of the Glaucoma Adherence and Persistency Study (GAPS). Invest Ophthalmol Vis Sci. 2007; 48: 5052 ‐ 5057.
dc.identifier.citedreferenceMiller PE, Schmidt GM, Vainisi SJ, et al. The efficacy of topical prophylactic antiglaucoma therapy in primary closed angle glaucoma in dogs: a multicenter clinical trial. J Am Anim Hosp Assoc. 2000; 36: 431 ‐ 438.
dc.identifier.citedreferenceAref AA. Sustained drug delivery for glaucoma: current data and future trends. Curr Opin Ophthalmol. 2017; 28: 169 ‐ 174.
dc.identifier.citedreferenceBrandt JD, DuBiner HB, Benza R, et al. Long‐term safety and efficacy of a sustained‐release bimatoprost ocular ring. Ophthalmology. 2017; 124: 1565 ‐ 1566.
dc.identifier.citedreferenceLee SS, Burke J, Shen J, et al. Bimatoprost sustained‐release intracameral implant reduces episcleral venous pressure in dogs. Vet Ophthalmol. 2018; 21: 376 ‐ 381.
dc.identifier.citedreferenceKomaromy AM, Koehl KL, Harman CD, et al. Long‐term intraocular Pressure (IOP) control by means of a novel biodegradable intracameral (IC) latanoprost free acid (LFA) implant (abstract). Annual Meeting of the Association for Research in Vision and Ophthalmology. 2017; 58: 4591.
dc.identifier.citedreferenceRobeson R, Verhoeven RS, Garcia A, et al. A 12‐month study of the ENV515 (travoprost) intracameral implant on intraocular pressure in beagle dogs (abstract). Annual Meeting of the Association for Research in Vision and Ophthalmology. 2017; 58: 1072.
dc.identifier.citedreferenceSeal JR, Robinson MR, Burke J, et al. Intracameral sustained‐release bimatoprost implant delivers bimatoprost to target tissues with reduced drug exposure to off‐target tissues. J Ocul Pharmacol Ther 2018; 35: 50 ‐ 57.
dc.identifier.citedreferenceBarachetti L, Rampazzo A, Mortellaro CM, et al. Use of episcleral cyclosporine implants in dogs with keratoconjunctivitis sicca: pilot study. Vet Ophthalmol. 2015; 18: 234 ‐ 241.
dc.identifier.citedreferenceGilger BC, Wilkie DA, Clode AB, et al. Long‐term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis. Vet Ophthalmol. 2010; 13: 294 ‐ 300.
dc.identifier.citedreferenceGilger BC, Stoppini R, Wilkie DA, et al. Treatment of immune‐mediated keratitis in horses with episcleral silicone matrix cyclosporine delivery devices. Vet Ophthalmol. 2014; 17 ( Suppl 1 ): 23 ‐ 30.
dc.identifier.citedreferenceRose MD, Mattoon JS, Gemensky‐Metzler AJ, et al. Ultrasound biomicroscopy of the iridocorneal angle of the eye before and after phacoemulsification and intraocular lens implantation in dogs. Am J Vet Res. 2008; 69: 279 ‐ 288.
dc.identifier.citedreferenceMiller PE, Stanz KM, Dubielzig RR, et al. Mechanisms of acute intraocular pressure increases after phacoemulsification lens extraction in dogs. Am J Vet Res. 1997; 58: 1159 ‐ 1165.
dc.identifier.citedreferenceStuhr CM, Miller PE, Murphy CJ, et al. Effect of intracameral administration of carbachol on the postoperative increase in intraocular pressure in dogs undergoing cataract extraction. J Am Vet Med Assoc. 1998; 212: 1885 ‐ 1888.
dc.identifier.citedreferenceSandberg CA, Herring IP, Huckle WR, et al. Aqueous humor vascular endothelial growth factor in dogs: association with intraocular disease and the development of pre‐iridal fibrovascular membrane. Vet Ophthalmol. 2012; 15 ( Suppl 1 ): 21 ‐ 30.
dc.identifier.citedreferenceLim LS, Mitchell P, Seddon JM, et al. Age‐related macular degeneration. Lancet. 2012; 379: 1728 ‐ 1738.
dc.identifier.citedreferenceSimunovic MP, Maberley DA. Anti‐vascular endothelial growth factor therapy for proliferative diabetic retinopathy: A systematic review and meta‐analysis. Retina. 2015; 35: 1931 ‐ 1942.
dc.identifier.citedreferenceWen JC, Reina‐Torres E, Sherwood JM, et al. Intravitreal anti‐VEGF injections reduce aqueous outflow facility in patients with neovascular age‐related macular degeneration. Invest Ophthalmol Vis Sci. 2017; 58: 1893 ‐ 1898.
dc.identifier.citedreferenceBiagi C, Conti V, Montanaro N, et al. Comparative safety profiles of intravitreal bevacizumab, ranibizumab and pegaptanib: the analysis of the WHO database of adverse drug reactions. Eur J Clin Pharmacol. 2014; 70: 1505 ‐ 1512.
dc.identifier.citedreferenceCunningham MA, Tlucek P, Folk JC, et al. Sequential, acute noninfectious uveitis associated with separate intravitreal injections of bevacizumab and ranibizumab. Retin Cases Brief Rep. 2013; 7: 355 ‐ 358.
dc.identifier.citedreferenceCampochiaro PA, Lauer AK, Sohn EH, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017; 28: 99 ‐ 111.
dc.identifier.citedreferenceBras D, Maggio F. Surgical treatment of canine glaucoma: cyclodestructive techniques. Vet Clin North Am Small Anim Pract. 2015; 45: 1283 ‐ 1305.
dc.identifier.citedreferenceMaggio F, Bras D. Surgical treatment of canine glaucoma: filtering and end‐stage glaucoma procedures. Vet Clin North Am Small Anim Pract. 2015; 45: 1261 ‐ 1282.
dc.identifier.citedreferenceWestermeyer HD, Hendrix DV, Ward DA. Long‐term evaluation of the use of Ahmed gonioimplants in dogs with primary glaucoma: nine cases (2000–2008). J Am Vet Med Assoc. 2011; 238: 610 ‐ 617.
dc.identifier.citedreferenceGraham KL, Donaldson D, Billson FA, et al. Use of a 350‐mm 2 Baerveldt glaucoma drainage device to maintain vision and control intraocular pressure in dogs with glaucoma: a retrospective study (2013–2016). Vet Ophthalmol. 2017; 20: 427 ‐ 434.
dc.identifier.citedreferenceGraham KL, Hall E, Caraguel C, et al. Comparison of diode laser trans‐scleral cyclophotocoagulation versus implantation of a 350‐mm(2) Baerveldt glaucoma drainage device for the treatment of glaucoma in dogs (a retrospective study: 2010–2016). Vet Ophthalmol. 2018; 21: 487 ‐ 497.
dc.identifier.citedreferenceCook C, Davidson M, Brinkmann M, et al. Diode laser transscleral cyclophotocoagulation for the treatment of glaucoma in dogs: results of six and twelve month follow‐up. Vet Comp Ophthalmol. 1997; 7: 148 ‐ 154.
dc.identifier.citedreferenceHardman C, Stanley RG. Diode laser transscleral cyclophotocoagulation for the treatment of primary glaucoma in 18 dogs: a retrospective study. Vet Ophthalmol. 2001; 4: 209 ‐ 215.
dc.identifier.citedreferenceO’Reilly A, Hardman C, Stanley RG. The use of transscleral cyclophotocoagulation with a diode laser for the treatment of glaucoma occurring post intracapsular extraction of displaced lenses: a retrospective study of 15 dogs (1995–2000). Vet Ophthalmol. 2003; 6: 113 ‐ 119.
dc.identifier.citedreferenceSapienza JS, van der Woerdt A. Combined transscleral diode laser cyclophotocoagulation and Ahmed gonioimplantation in dogs with primary glaucoma: 51 cases (1996–2004). Vet Ophthalmol. 2005; 8: 121 ‐ 127.
dc.identifier.citedreferenceBentley E, Miller PE, Murphy CJ, et al. Combined cycloablation and gonioimplantation for treatment of glaucoma in dogs: 18 cases (1992–1998). J Am Vet Med Assoc. 1999; 215: 1469 ‐ 1472.
dc.identifier.citedreferenceBudenz DL, Barton K, Gedde SJ, et al. Five‐year treatment outcomes in the Ahmed Baerveldt comparison study. Ophthalmology. 2015; 122: 308 ‐ 316.
dc.identifier.citedreferenceReilly CM, Morris R, Dubielzig RR. Canine goniodysgenesis‐related glaucoma: a morphologic review of 100 cases looking at inflammation and pigment dispersion. Vet Ophthalmol. 2005; 8: 253 ‐ 258.
dc.identifier.citedreferenceCullen CL, Allen AL, Grahn BH. Anterior chamber to frontal sinus shunt for the diversion of aqueous humor: a pilot study in four normal dogs. Vet Ophthalmol. 1998; 1: 31 ‐ 39.
dc.identifier.citedreferenceEsson DW, Neelakantan A, Iyer SA, et al. Expression of connective tissue growth factor after glaucoma filtration surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2004; 45: 485 ‐ 491.
dc.identifier.citedreferenceEsson DW, Popp MP, Liu L, et al. Microarray analysis of the failure of filtering blebs in a rat model of glaucoma filtering surgery. Invest Ophthalmol Vis Sci. 2004; 45: 4450 ‐ 4462.
dc.identifier.citedreferenceYu‐Wai‐Man C, Spencer‐Dene B, Lee R, et al. Local delivery of novel MRTF/SRF inhibitors prevents scar tissue formation in a preclinical model of fibrosis. Sci Rep. 2017; 7: 518.
dc.identifier.citedreferenceMartorana GM, Schaefer JL, Levine MA, et al. Sequential therapy with saratin, bevacizumab and ilomastat to prolong bleb function following glaucoma filtration surgery in a rabbit model. PLoS ONE. 2015; 10: e0138054.
dc.identifier.citedreferenceSriram S, Robinson P, Pi L, et al. Triple combination of siRNAs targeting TGFbeta1, TGFbetaR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts. Invest Ophthalmol Vis Sci. 2013; 54: 8214 ‐ 8223.
dc.identifier.citedreferenceMolteno AC, Van Biljon G, Ancker E. Two‐stage insertion of glaucoma drainage implants. Trans Ophthalmol Soc N Z. 1979; 31: 17 ‐ 26.
dc.identifier.citedreferenceNadelstein B, Wilcock B, Cook C, et al. Clinical and histiologic effects of diode transscleral cyclophotocoagulation in the normal canine eye. Vet Comp Ophthalmol. 1997; 7: 155 ‐ 162.
dc.identifier.citedreferenceLee JH, Shi Y, Amoozgar B, et al. Outcome of micropulse laser transscleral cyclophotocoagulation on pediatric versus adult glaucoma patients. J Glaucoma. 2017; 26: 936 ‐ 939.
dc.identifier.citedreferenceSapienza JS, Kim K, Rodriguez E, DiGirolamo N. Preliminary findings in 30 dogs treated with micropulse transscleral cyclophotocoagulation for refractory glaucoma. Vet Ophthalmol. 2018; https://doi.org/10.1111/vop.12622. [Epub ahead of print].
dc.identifier.citedreferencePalko JR, Morris HJ, Pan X, et al. Influence of age on ocular biomechanical properties in a canine glaucoma model with ADAMTS10 mutation. PLoS ONE. 2016; 11: e0156466.
dc.identifier.citedreferenceSebbag L, Allbaugh RA, Strauss RA, et al. MicroPulse™ transscleral cyclophotocoagulation in the treatment of canine glaucoma: Preliminary results (12 dogs). Vet Ophthalmol 2018. https://doi.org/10.1111/vop.12603 [Epub ahead of print].
dc.identifier.citedreferenceNewkirk KM, Haines DK, Calvarese ST, et al. Distribution and amount of pigment within the ciliary body and iris of dogs with blue and brown irides. Vet Ophthalmol. 2010; 13: 76 ‐ 80.
dc.identifier.citedreferenceLavia C, Dallorto L, Maule M, et al. Minimally‐invasive glaucoma surgeries (MIGS) for open angle glaucoma: a systematic review and meta‐analysis. PLoS ONE. 2017; 12: e0183142.
dc.identifier.citedreferenceFingeret M, Dickerson JE Jr. The role of minimally invasive glaucoma surgery devices in the management of glaucoma. Optom Vis Sci. 2018; 95: 155 ‐ 162.
dc.identifier.citedreferenceLutz EA, Sapienza JS. Combined diode endoscopic cyclophotocoagulation and Ex‐Press™ shunt gonioimplantation in four cases canine glaucoma (abstract). 40th Annual Conference of the American College of Veterinary Ophthalmologists. 2009; 80.
dc.identifier.citedreferenceShute TS, Dietrich UM, Baker JF, et al. Biocompatibility of a novel microfistula implant in nonprimate mammals for the surgical treatment of glaucoma. Invest Ophthalmol Vis Sci. 2016; 57: 3594 ‐ 3600.
dc.identifier.citedreferenceLarocca RD, Martin RC. Early results of the veterinary implant glaucoma registry (VIGOR) a multicenter evaluation of the Brown glaucoma implant in canines (abstract). 49th Annual Conference of the American College of Veterinary Ophthalmologists. 2018; 137.
dc.identifier.citedreferenceMartin RC, Baker SR, Render JA, et al. Safety and efficacy evaluation of a nanoengineered, externally comunicating, aqueous humor shunt in Yucatan swine (abstract). 49th Annual Conference of the American College of Veterinary Ophthalmologists. 2018; 136.
dc.identifier.citedreferenceGuy J, Feuer WJ, Davis JL, et al. Genet for Leber hereditary optic neuropathy: low‐ and medium‐dose visual results. Ophthalmology. 2017; 124: 1621 ‐ 1634.
dc.identifier.citedreferenceBennett J. Taking stock of retinal gene therapy: looking back and moving forward. Mol Ther. 2017; 25: 1076 ‐ 1094.
dc.identifier.citedreferenceBuie LK, Rasmussen CA, Porterfield EC, et al. Self‐complementary AAV virus (scAAV) safe and long‐term gene transfer in the trabecular meshwork of living rats and monkeys. Invest Ophthalmol Vis Sci. 2010; 51: 236 ‐ 248.
dc.identifier.citedreferenceBogner B, Boye SL, Min SH, et al. Capsid mutated adeno‐associated virus delivered to the anterior chamber results in efficient transduction of trabecular meshwork in mouse and rat. PLoS ONE. 2015; 10: e0128759.
dc.identifier.citedreferenceDang Y, Loewen R, Parikh HA, et al. Gene transfer to the outflow tract. Exp Eye Res. 2017; 158: 73 ‐ 84.
dc.identifier.citedreferenceWang L, Xiao R, Andres‐Mateos E, et al. Single stranded adeno‐associated virus achieves efficient gene transfer to anterior segment in the mouse eye. PLoS ONE. 2017; 12: e0182473.
dc.identifier.citedreferenceOh A, Harman CD, Koehl K, et al. Targeting of gene expression to the wildtype and ADAMTS10 ‐mutant canine trabecular meshwork by non‐self‐complementary AAV2 (abstract). Annual Meeting of the Association for Research in Vision and Ophthalmology. 2014; 55: 5669.
dc.identifier.citedreferenceAsokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. 2012; 20: 699 ‐ 708.
dc.identifier.citedreferenceZhu W, Gramlich OW, Laboissonniere L, et al. Transplantation of iPSC‐derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci USA. 2016; 113: E3492 ‐ E3500.
dc.identifier.citedreferenceZhu W, Jain A, Gramlich OW, et al. Restoration of aqueous humor outflow following transplantation of iPSC‐derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2017; 58: 2054 ‐ 2062.
dc.identifier.citedreferenceQuigley HA. The contribution of the sclera and lamina cribrosa to the pathogenesis of glaucoma: diagnostic and treatment implications. Prog Brain Res. 2015; 220: 59 ‐ 86.
dc.identifier.citedreferenceSommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 1991; 109: 1090 ‐ 1095.
dc.identifier.citedreferenceKlein BE, Klein R, Sponsel WE, et al. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology. 1992; 99: 1499 ‐ 1504.
dc.identifier.citedreferenceCollaborative Normal‐Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal‐tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998; 126: 487 ‐ 497.
dc.identifier.citedreferenceKuchtey J, Olson LM, Rinkoski T, et al. Mapping of the disease locus and identification of ADAMTS10 as a candidate gene in a canine model of primary open angle glaucoma. PLoS Genet. 2011; 7: e1001306.
dc.identifier.citedreferenceBoote C, Palko JR, Sorensen T, et al. Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation. Mol Vis. 2016; 22: 503 ‐ 517.
dc.identifier.citedreferencePalko JR, Iwabe S, Pan X, et al. Biomechanical properties and correlation with collagen solubility profile in the posterior sclera of canine eyes with an ADAMTS10 mutation. Invest Ophthalmol Vis Sci. 2013; 54: 2685 ‐ 2695.
dc.identifier.citedreferenceSeki M, Lipton SA. Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma. Prog Brain Res. 2008; 173: 495 ‐ 510.
dc.identifier.citedreferenceBrooks DE, Garcia GA, Dreyer EB, et al. Vitreous body glutamate concentration in dogs with glaucoma. Am J Vet Res. 1997; 58: 864 ‐ 867.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.