Show simple item record

Incentive and dopamine sensitization produced by intermittent but not long access cocaine self‐administration

dc.contributor.authorKawa, Alex B.
dc.contributor.authorValenta, Alec C.
dc.contributor.authorKennedy, Robert T.
dc.contributor.authorRobinson, Terry E.
dc.date.accessioned2019-10-30T15:31:33Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:31:33Z
dc.date.issued2019-08
dc.identifier.citationKawa, Alex B.; Valenta, Alec C.; Kennedy, Robert T.; Robinson, Terry E. (2019). "Incentive and dopamine sensitization produced by intermittent but not long access cocaine self‐administration." European Journal of Neuroscience 50(4): 2663-2682.
dc.identifier.issn0953-816X
dc.identifier.issn1460-9568
dc.identifier.urihttps://hdl.handle.net/2027.42/151906
dc.description.abstractThe temporal pattern of drug use (pharmacokinetics) has a profound effect on the ability of self‐administered cocaine to produce addiction‐like behavior in rodents, and to change the brain. To further address this issue, we compared the effects of long access (LgA) cocaine self‐administration, which is widely used to model the transition to addiction, with intermittent access (IntA), which is thought to better reflect the pattern of drug use in humans, on the ability of a single, self‐administered injection of cocaine to increase dopamine (DA) overflow in the core of the nucleus accumbens (using in vivo microdialysis), and to produce addiction‐like behavior. IntA experience was more effective than LgA in producing addiction‐like behavior—a drug experience‐dependent increase in motivation for cocaine assessed using behavioral economic procedures, and cue‐induced reinstatement—despite much less total drug consumption. There were no group differences in basal levels of DA in dialysate [DA], but a single self‐administered IV injection of cocaine increased [DA] in the core of the nucleus accumbens to a greater extent in rats with prior IntA experience than those with LgA or limited access experience, and the latter two groups did not differ. Furthermore, high motivation for cocaine was associated with a high [DA] response. Thus, IntA, but not LgA, produced both incentive and DA sensitization. This is consistent with the notion that a hyper‐responsive dopaminergic system may contribute to the transition from casual patterns of drug use to the problematic patterns that define addiction.We compared the effects of long access cocaine self‐administration with intermittent access on the ability of self‐administered cocaine to increase dopamine overflow in the core of the nucleus accumbens and to produce addiction‐like behavior. Intermittent access (IntA) was more effective than long access (LgA) in producing addiction‐like behavior despite much less total drug consumption and cocaine increased dopamine to a greater extent in rats with prior IntA experience than those with LgA.
dc.publisherRoutledge
dc.publisherWiley Periodicals, Inc.
dc.subject.otherintermittent access
dc.subject.otheraddiction
dc.subject.othercocaine
dc.subject.otherdopamine
dc.subject.othersensitization
dc.titleIncentive and dopamine sensitization produced by intermittent but not long access cocaine self‐administration
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151906/1/ejn14418_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151906/2/ejn14418.pdf
dc.identifier.doi10.1111/ejn.14418
dc.identifier.sourceEuropean Journal of Neuroscience
dc.identifier.citedreferenceQuadros, I. M. H., & Miczek, K. A. ( 2009 ). Two modes of intense cocaine bingeing: Increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacology (Berl), 206, 109 – 120. https://doi.org/10.1007/s00213-009-1584-6
dc.identifier.citedreferencePaxinos, G., & Watson, C. ( 2007 ). The rat brain in stereotaxic coordinates ( 6th ed. ). San Diego, CA: Academic Press.
dc.identifier.citedreferencePitchers, K. K., Kane, L. F., Kim, Y., Robinson, T. E., & Sarter, M. ( 2017 ). ‘Hot’ vs. ‘cold’ behavioural‐cognitive styles: Motivational‐dopaminergic vs. cognitive‐cholinergic processing of a Pavlovian cocaine cue in sign‐ and goal‐tracking rats. European Journal of Neuroscience, 46, 2768 – 2781. https://doi.org/10.1111/ejn.13741
dc.identifier.citedreferenceReid, M. S., Hsu, K., & Berger, S. P. ( 1997 ). Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: Studies on the involvement of dopamine. Synapse, 27, 95 – 105. https://doi.org/10.1002/(ISSN)1098-2396
dc.identifier.citedreferenceRobinson, T. E., & Berridge, K. C. ( 1993 ). The neural basis of drug craving: An incentive‐sensitization theory of addiction. Brain Research Reviews, 18, 247 – 291. https://doi.org/10.1016/0165-0173(93)90013-P
dc.identifier.citedreferenceRowland, N. E. ( 2007 ). Food or fluid restriction in common laboratory animals: Balancing welfare considerations with scientific inquiry. Comparative Medicine, 57, 149 – 160.
dc.identifier.citedreferenceSaunders, B. T., & Robinson, T. E. ( 2010 ). A cocaine cue acts as an incentive stimulus in some but not others: Implications for addiction. Biological Psychiatry, 67, 730 – 736. https://doi.org/10.1016/j.biopsych.2009.11.015
dc.identifier.citedreferenceSchenk, S., Lacelle, G., Gorman, K., & Amit, Z. ( 1987 ). Cocaine self‐administration in rats influenced by environmental conditions: Implications for the etiology of drug abuse. Neuroscience Letters, 81, 227 – 231. https://doi.org/10.1016/0304-3940(87)91003-2
dc.identifier.citedreferenceSharpe, A. L., & Samson, H. H. ( 2001 ). Effect of naloxone on appetitive and consummatory phases of ethanol self‐administration. Alcoholism, Clinical and Experimental Research, 25, 1006 – 1011. https://doi.org/10.1111/j.1530-0277.2001.tb02309.x
dc.identifier.citedreferenceSiciliano, C. A., Fordahl, S. C., & Jones, S. R. ( 2016 ). Cocaine self‐administration produces long‐lasting alterations in dopamine transporter responses to cocaine. Journal of Neuroscience, 36, 7807 – 7816. https://doi.org/10.1523/JNEUROSCI.4652-15.2016
dc.identifier.citedreferenceSimon, S. L., Richardson, K., Dacey, J., Glynn, S., Domier, C. P., Rawson, R. A., & Ling, W. ( 2002 ). A comparison of patterns of methamphetamine and cocaine use. Journal of Addictive Diseases, 21, 35 – 44.
dc.identifier.citedreferenceSinger, B. F., Fadanelli, M., Kawa, A. B., & Robinson, T. E. ( 2018 ). Are cocaine‐seeking “habits” necessary for the development of addiction‐like behavior in rats? Journal of Neuroscience, 38, 60 – 73.
dc.identifier.citedreferenceSmith, J. A., Mo, Qiu., Guo, H., Kunko, P. M., & Robinson, S. E. ( 1995 ). Cocaine increases extraneuronal levels of aspartate and glutamate in the nucleus accumbens. Brain Research, 683, 264 – 269. https://doi.org/10.1016/0006-8993(95)00383-2
dc.identifier.citedreferenceSong, P., Mabrouk, O. S., Hershey, N. D., & Kennedy, R. T. ( 2012 ). In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography‐mass spectrometry. Analytical Chemistry, 84, 412 – 419. https://doi.org/10.1021/ac202794q
dc.identifier.citedreferenceStuber, G. D., Roitman, M. F., Phillips, P. E. M., Carelli, R. M., & Wightman, R. M. ( 2005 ). Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology, 30, 853 – 863. https://doi.org/10.1038/sj.npp.1300619
dc.identifier.citedreferenceU.S. Department of Health and Human Services ( 2016 ). Facing addiction in America: The surgeon general’s report on alcohol, drugs, and health. Washington DC: HHS.
dc.identifier.citedreferenceVanderschuren, L. J., & Everitt, B. J. ( 2004 ). Drug seeking becomes compulsive after prolonged cocaine self‐administration. Science, 305, 1017 – 1019. https://doi.org/10.1126/science.1098975
dc.identifier.citedreferenceVolkow, N. D., Koob, G. F., & McLellan, A. T. ( 2016 ). Neurobiologic advances from the brain disease model of addiction. New England Journal of Medicine, 374, 363 – 371. https://doi.org/10.1056/NEJMra1511480
dc.identifier.citedreferenceWee, S., Mandyam, C. D., Lekic, D. M., & Koob, G. F. ( 2008 ). Alpha 1‐noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. European Neuropsychopharmacology, 18, 303 – 311. https://doi.org/10.1016/j.euroneuro.2007.08.003
dc.identifier.citedreferenceWeeks, J. R. ( 1962 ). Experimental morphine addiction: Method for automatic intravenous injections in unrestrained rats. Science, 138, 143 – 144. https://doi.org/10.1126/science.138.3537.143
dc.identifier.citedreferenceWest, B. T., Welch, K. B., & Galecki, A. T. ( 2007 ). Linear mixed models a practical guide using statistical software, statistics in medicine. Boca Raton, FL: Chapman & Hall.
dc.identifier.citedreferenceWilluhn, I., Burgeno, L. M., Groblewski, P. A., & Phillips, P. E. M. ( 2014 ). Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nature Neuroscience, 17, 704 – 709. https://doi.org/10.1038/nn.3694
dc.identifier.citedreferenceWood, P. L., Kim, H. S., & Marien, M. R. ( 1987 ). Intracerebral dialysis: Direct evidence for the utility of 3‐MT measurements as an index of dopamine release. Life Sciences, 41, 1 – 5. https://doi.org/10.1016/0024-3205(87)90549-2
dc.identifier.citedreferenceXue, Y., Steketee, J. D., & Sun, W. ( 2012 ). Inactivation of the central nucleus of the amygdala reduces the effect of punishment on cocaine self‐administration in rats. European Journal of Neuroscience, 35, 775 – 783. https://doi.org/10.1111/j.1460-9568.2012.08000.x
dc.identifier.citedreferenceZimmer, B. A., Dobrin, C. V., & Roberts, D. C. S. ( 2011 ). Brain‐cocaine concentrations determine the dose self‐administered by rats on a novel behaviorally dependent dosing schedule. Neuropsychopharmacology, 36, 2741 – 2749. https://doi.org/10.1038/npp.2011.165
dc.identifier.citedreferenceZimmer, B. A., Oleson, E. B., & Roberts, D. C. ( 2012 ). The motivation to self‐administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacology, 37, 1901 – 1910. https://doi.org/10.1038/npp.2012.37
dc.identifier.citedreferenceAhmed, S. H. ( 2012 ). The science of making drug‐addicted animals. Neuroscience, 211, 107 – 125. https://doi.org/10.1016/j.neuroscience.2011.08.014
dc.identifier.citedreferenceAhmed, S. H. ( 2018 ). “A walk on the wild side” of addiction: The history and significance of animal models. In H. Pickard & S. H. Ahmed (Eds.), Routledge handbook on philosophy and science of addiction (pp. 192 – 204 ). Routledge, NY: Routledge. https://doi.org/10.4324/9781315689197
dc.identifier.citedreferenceAhmed, S. H., & Cador, M. ( 2006 ). Dissociation of psychomotor sensitization from compulsive cocaine consumption. Neuropsychopharmacology, 31, 563 – 571. https://doi.org/10.1038/sj.npp.1300834
dc.identifier.citedreferenceAhmed, S. H., & Koob, G. F. ( 1998 ). Transition from moderate to excessive drug intake: Change in hedonic set point. Science, 282, 298 – 300. https://doi.org/10.1126/science.282.5387.298
dc.identifier.citedreferenceAhmed, S. H., & Koob, G. F. ( 1999 ). Long‐lasting increase in the set point for cocaine self‐administration after escalation in rats. Psychopharmacology (Berl), 146, 303 – 312. https://doi.org/10.1007/s002130051121
dc.identifier.citedreferenceAhmed, S. H., Lin, D., Koob, G. F., & Parsons, L. H. ( 2003 ). Escalation of cocaine self‐administration does not depend on altered cocaine‐induced nucleus accumbens dopamine levels. Journal of Neurochemistry, 86, 102 – 113.
dc.identifier.citedreferenceAllain, F., Bouayad‐Gervais, K., & Samaha, A.‐N. ( 2018 ). High and escalating levels of cocaine intake are dissociable from subsequent incentive motivation for the drug in rats. Psychopharmacology (Berl), 235, 317 – 328. https://doi.org/10.1007/s00213-017-4773-8
dc.identifier.citedreferenceAllain, F., Minogianis, E.‐A., Roberts, D. C. S., & Samaha, A.‐N. ( 2015 ). How fast and how often: The pharmacokinetics of drug use are decisive in addiction. Neuroscience and Biobehavioral Reviews, 56, 166 – 179. https://doi.org/10.1016/j.neubiorev.2015.06.012
dc.identifier.citedreferenceAllain, F., Roberts, D. C. S., Lévesque, D., & Samaha, A.‐N. ( 2017 ). Intermittent intake of rapid cocaine injections promotes robust psychomotor sensitization, increased incentive motivation for the drug and mGlu2/3 receptor dysregulation. Neuropharmacology, 117, 227 – 237. https://doi.org/10.1016/j.neuropharm.2017.01.026
dc.identifier.citedreferenceAllain, F., & Samaha, A.‐N. ( 2018 ). Revisiting long‐access versus short‐access cocaine self‐administration in rats: Intermittent intake promotes addiction symptoms independent of session length. Addiction Biology in press. https://doi.org/10.1111/adb.12629.
dc.identifier.citedreferenceAragona, B. J., Cleaveland, N. A., Stuber, G. D., Day, J. J., Carelli, R. M., & Wightman, R. M. ( 2008 ). Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. Journal of Neuroscience, 28, 8821 – 8831. https://doi.org/10.1523/JNEUROSCI.2225-08.2008
dc.identifier.citedreferenceAxelrod, J. ( 1966 ). Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines. Pharmacological Reviews, 18, 95 – 113.
dc.identifier.citedreferenceBentzley, B. S., Fender, K. M., & Aston‐Jones, G. ( 2013 ). The behavioral economics of drug self‐administration: A review and new analytical approach for within‐session procedures. Psychopharmacology (Berl), 226, 113 – 125. https://doi.org/10.1007/s00213-012-2899-2
dc.identifier.citedreferenceBentzley, B. S., Jhou, T. C., & Aston‐Jones, G. ( 2014 ). Economic demand predicts addiction‐like behavior and therapeutic efficacy of oxytocin in the rat. Proceedings of the National Academy of Sciences, 111, 11822 – 11827. https://doi.org/10.1073/pnas.1406324111
dc.identifier.citedreferenceBerridge, K. C. ( 2004 ). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81, 179 – 209. https://doi.org/10.1016/j.physbeh.2004.02.004
dc.identifier.citedreferenceBerridge, K. C., & Robinson, T. E. ( 2016 ). Liking, wanting, and the incentive‐sensitization theory of addiction. American Psychologist, 71, 670 – 679. https://doi.org/10.1037/amp0000059
dc.identifier.citedreferenceBlum, K., Thanos, P. K., Oscar‐Berman, M., Febo, M., Baron, D., Badgaiyan, R. D., … Gold, M. S. ( 2015 ). Dopamine in the brain: Hypothesizing surfeit or deficit links to reward and addiction. Journal of Reward Deficiency Syndrome, 1, 95 – 104.
dc.identifier.citedreferenceBoyle, A. E., Gill, K., Smith, B. R., & Amit, Z. ( 1991 ). Differential effects of an early housing manipulation on cocaine‐induced activity and self‐administration in laboratory rats. Pharmacology, Biochemistry and Behavior, 39, 269 – 274. https://doi.org/10.1016/0091-3057(91)90178-5
dc.identifier.citedreferenceBozarth, M. A., Murray, A., & Wise, R. A. ( 1989 ). Influence of housing conditions on the acquisition of intravenous heroin and cocaine self‐administration in rats. Pharmacology, Biochemistry and Behavior, 33, 903 – 907. https://doi.org/10.1016/0091-3057(89)90490-5
dc.identifier.citedreferenceCalipari, E. S., Ferris, M. J., & Jones, S. R. ( 2014 ). Extended access of cocaine self‐administration results in tolerance to the dopamine‐elevating and locomotor‐stimulating effects of cocaine. Journal of Neurochemistry, 128, 224 – 232. https://doi.org/10.1111/jnc.12452
dc.identifier.citedreferenceCalipari, E. S., Ferris, M. J., Zimmer, B. A., Roberts, D. C. S., & Jones, S. R. ( 2013 ). Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology, 38, 2385 – 2392. https://doi.org/10.1038/npp.2013.136
dc.identifier.citedreferenceCalipari, E. S., Siciliano, C. A., Zimmer, B. A., & Jones, S. R. ( 2015 ). Brief intermittent cocaine self‐administration and abstinence sensitizes cocaine effects on the dopamine transporter and increases drug seeking. Neuropsychopharmacology, 40, 728 – 735. https://doi.org/10.1038/npp.2014.238
dc.identifier.citedreferenceCaprioli, D., Calu, D., & Shaham, Y. ( 2014 ). Loss of phasic dopamine: A new addiction marker? Nature Neuroscience, 17, 644 – 646. https://doi.org/10.1038/nn.3699
dc.identifier.citedreferenceCarroll, M. E., France, C. P., & Meisch, R. A. ( 1981 ). Intravenous self‐administration of etonitazene, cocaine and phencyclidine in rats during food deprivation and satiation. Journal of Pharmacology and Experimental Therapeutics, 217, 241 – 247.
dc.identifier.citedreferenceCohen, P., & Sas, A. ( 1994 ). Cocaine use in Amsterdam in non deviant subcultures. Addiction Research and Theory, 2, 71 – 94. https://doi.org/10.3109/16066359409005547
dc.identifier.citedreferenceCrombag, H. S., Badiani, A., Maren, S., & Robinson, T. E. ( 2000 ). The role of contextual versus discrete drug‐associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behavioral Brain Research, 116, 1 – 22. https://doi.org/10.1016/S0166-4328(00)00243-6
dc.identifier.citedreferenceDackis, C. A., & Gold, M. S. ( 1985 ). New concepts in cocaine addiction: the dopamine depletion hypothesis. Neuroscience and Biobehavioral Reviews, 9, 469 – 477. https://doi.org/10.1016/0149-7634(85)90022-3
dc.identifier.citedreferenceDe Vry, J., Donselaar, I., & Van Ree, J. M. ( 1989 ). Food deprivation and acquisition of intravenous cocaine self‐administration in rats: Effect of naltrexone and haloperidol. Journal of Pharmacology and Experimental Therapeutics, 251, 735 – 740.
dc.identifier.citedreferenceDeroche‐Gamonet, V., Belin, D., & Piazza, P. V. ( 2004 ). Evidence for addiction‐like behavior in the rat. Science, 305, 1014 – 1017. https://doi.org/10.1126/science.1099020
dc.identifier.citedreferenceEdwards, S., & Koob, G. F. ( 2013 ). Escalation of drug self‐administration as a hallmark of persistent addiction liability. Behavioural Pharmacology, 24, 356 – 362. https://doi.org/10.1097/FBP.0b013e3283644d15
dc.identifier.citedreferenceFerrario, C. R., Gorny, G., Crombag, H. S., Li, Y., Kolb, B., & Robinson, T. E. ( 2005 ). Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biological Psychiatry, 58, 751 – 759. https://doi.org/10.1016/j.biopsych.2005.04.046
dc.identifier.citedreferenceFerris, M. J., Mateo, Y., Roberts, D. C. S., & Jones, S. R. ( 2011 ). Cocaine‐insensitive dopamine transporters with intact substrate transport produced by self‐administration. Biological Psychiatry, 69, 201 – 207. https://doi.org/10.1016/j.biopsych.2010.06.026
dc.identifier.citedreferenceGerber, G. J., & Wise, R. A. ( 1989 ). Pharmacological regulation of intravenous cocaine and heroin self‐administration in rats: A variable dose paradigm. Pharmacology, Biochemistry and Behavior, 32, 527 – 531. https://doi.org/10.1016/0091-3057(89)90192-5
dc.identifier.citedreferenceGueye, A. B., Allain, F., & Samaha, A.‐N. ( 2018 ). Intermittent intake of rapid cocaine injections promotes the risk of relapse and increases mesocorticolimbic BDNF levels during abstinence. Neuropsychopharmacology, 44, 1027 – 1035. https://doi.org/10.1038/s41386-018-0249-8
dc.identifier.citedreferenceGuillem, K., Ahmed, S. H., & Peoples, L. L. ( 2014 ). Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions. Biological Psychiatry, 76, 31 – 39. https://doi.org/10.1016/j.biopsych.2013.08.032
dc.identifier.citedreferenceHershey, N. D., & Kennedy, R. T. ( 2013 ). In vivo calibration of microdialysis using infusion of stable‐isotope labeled neurotransmitters. ACS Chemical Neuroscience, 4, 729 – 736. https://doi.org/10.1021/cn300199m
dc.identifier.citedreferenceHurd, Y. L., Weiss, F., Koob, G. F., And, N. E., & Ungerstedt, U. ( 1989 ). Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: An in vivo microdialysis study. Brain Research, 498, 199 – 203. https://doi.org/10.1016/0006-8993(89)90422-8
dc.identifier.citedreferenceHursh, S. R. ( 1991 ). Behavioral economics of drug self‐administration and drug abuse policy. Journal of the Experimental Analysis of Behavior, 56, 377 – 393. https://doi.org/10.1901/jeab.1991.56-377
dc.identifier.citedreferenceHursh, S. R., & Silberberg, A. ( 2008 ). Economic demand and essential value. Psychological Review, 115, 186 – 198. https://doi.org/10.1037/0033-295X.115.1.186
dc.identifier.citedreferenceJames, M. H., Stopper, C. M., Zimmer, B. A., Koll, N. E., Bowrey, H. E., & Aston‐Jones, G. ( 2018 ). Increased number and activity of a lateral subpopulation of hypothalamic orexin/hypocretin neurons underlies the expression of an addicted state in rats. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2018.07.022
dc.identifier.citedreferenceKawa, A. B., Allain, F., Robinson, T. E., & Samaha, A.‐N. ( 2019 ). The transition to cocaine addiction: The importance of pharmacokinetics for preclinical models. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-019-5164-0
dc.identifier.citedreferenceKawa, A. B., Bentzley, B. S., & Robinson, T. E. ( 2016 ). Less is more: Prolonged intermittent access cocaine self‐administration produces incentive‐sensitization and addiction‐like behavior. Psychopharmacology (Berl), 233, 3587 – 3602. https://doi.org/10.1007/s00213-016-4393-8
dc.identifier.citedreferenceKawa, A. B., & Robinson, T. E. ( 2019 ). Sex differences in incentive‐sensitization produced by intermittent access cocaine self‐administration. Psychopharmacology (Berl), 236, 625 – 639. https://doi.org/10.1007/s00213-018-5091-5
dc.identifier.citedreferenceKippin, T. E., Fuchs, R. A., & See, R. E. ( 2006 ). Contributions of prolonged contingent and noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl), 187, 60 – 67. https://doi.org/10.1007/s00213-006-0386-3
dc.identifier.citedreferenceKoob, G. F., & Le Moal, M. ( 1997 ). Drug abuse: Hedonic homeostatic dysregulation. Science, 278, 52 – 58. https://doi.org/10.1126/science.278.5335.52
dc.identifier.citedreferenceKoob, G. F., & Le Moal, M. ( 2001 ). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97 – 129. https://doi.org/10.1016/S0893-133X(00)00195-0
dc.identifier.citedreferenceKoob, G. F., & Volkow, N. D. ( 2016 ). Neurobiology of addiction: A neurocircuitry analysis. The Lancet. Psychiatry, 3, 760 – 773. https://doi.org/10.1016/S2215-0366(16)00104-8
dc.identifier.citedreferenceKruzich, P. J., Congelton, K. M., & See, R. E. ( 2001 ). Conditioned reinstatement of drug‐seeking behavior with a discrete compound stimulus classically conditioned with intravenous cocaine. Behavioral Neuroscience, 115, 1086 – 1092. https://doi.org/10.1037/0735-7044.115.5.1086
dc.identifier.citedreferenceLiu, Y., Roberts, D. C. S., & Morgan, D. ( 2005 ). Effects of extended‐access self‐administration and deprivation on breakpoints maintained by cocaine in rats. Psychopharmacology (Berl), 179, 644 – 651. https://doi.org/10.1007/s00213-004-2089-y
dc.identifier.citedreferenceLu, L., Shepard, J. D., Scott Hall, F., & Shaham, Y. ( 2003 ). Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: A review. Neuroscience and Biobehavioral Reviews, 27, 457 – 491. https://doi.org/10.1016/S0149-7634(03)00073-3
dc.identifier.citedreferenceLynch, W. J., & Carroll, M. E. ( 2001 ). Regulation of drug intake. Experimental and Clinical Psychopharmacology, 9, 131 – 143. https://doi.org/10.1037/1064-1297.9.2.131
dc.identifier.citedreferenceMantsch, J. R., Baker, D. A., Francis, D. M., Katz, E. S., Hoks, M. A., & Serge, J. P. ( 2008 ). Stressor‐ and corticotropin releasing factor‐induced reinstatement and active stress‐related behavioral responses are augmented following long‐access cocaine self‐administration by rats. Psychopharmacology (Berl), 195, 591 – 603.
dc.identifier.citedreferenceMantsch, J. R., Yuferov, V., Mathieu‐Kia, A. M., Ho, A., & Kreek, M. J. ( 2004 ). Effects of extended access to high versus low cocaine doses on self‐administration, cocaine‐induced reinstatement and brain mRNA levels in rats. Psychopharmacology (Berl), 175, 26 – 36.
dc.identifier.citedreferenceMarsden, C. A., Broch, O. J., & Guldberg, H. C. ( 1972 ). Effect of nigral and raphé lesions on the catechol‐O‐methyl transferase and monoamine oxidase activities in the rat striatum. European Journal of Pharmacology, 19, 35 – 42. https://doi.org/10.1016/0014-2999(72)90074-X
dc.identifier.citedreferenceMateo, Y., Lack, C. M., Morgan, D., Roberts, D. C. S., & Jones, S. R. ( 2005 ). Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self‐administration and deprivation. Neuropsychopharmacology, 30, 1455 – 1463. https://doi.org/10.1038/sj.npp.1300687
dc.identifier.citedreferenceNicola, S. M., & Deadwyler, S. A. ( 2000 ). Firing rate of nucleus accumbens neurons is dopamine‐dependent and reflects the timing of cocaine‐seeking behavior in rats on a progressive ratio schedule of reinforcement. Journal of Neuroscience, 20, 5526 – 5537. https://doi.org/10.1523/JNEUROSCI.20-14-05526.2000
dc.identifier.citedreferenceOleson, E. B., Richardson, J. M., & Roberts, D. C. S. ( 2011 ). A novel IV cocaine self‐administration procedure in rats: Differential effects of dopamine, serotonin, and GABA drug pre‐treatments on cocaine consumption and maximal price paid. Psychopharmacology (Berl), 214, 567 – 577. https://doi.org/10.1007/s00213-010-2058-6
dc.identifier.citedreferenceOleson, E. B., & Roberts, D. C. S. ( 2009 ). Behavioral economic assessment of price and cocaine consumption following self‐administration histories that produce escalation of either final ratios or intake. Neuropsychopharmacology, 34, 796 – 804. https://doi.org/10.1038/npp.2008.195
dc.identifier.citedreferencePaterson, N. E., & Markou, A. ( 2003 ). Increased motivation for self‐administered cocaine after escalated cocaine intake. NeuroReport, 14, 2229 – 2232. https://doi.org/10.1097/00001756-200312020-00019
dc.identifier.citedreferencePaulson, P. E., & Robinson, T. E. ( 1994 ). Relationship between circadian changes in spontaneous motor activity and dorsal versus ventral striatal dopamine neurotransmission assessed with on‐line microdialysis. Behavioral Neuroscience, 108, 624 – 635. https://doi.org/10.1037/0735-7044.108.3.624
dc.identifier.citedreferencePhillips, G. D., Howes, S. R., Whitelaw, R. B., Wilkinson, L. S., Robbins, T. W., & Everitt, B. J. ( 1994 ). Isolation rearing enhances the locomotor response to cocaine and a novel environment, but impairs the intravenous self‐administration of cocaine. Psychopharmacology (Berl), 115, 407 – 418. https://doi.org/10.1007/BF02245084
dc.identifier.citedreferencePierce, R., Bell, K., Duffy, P., & Kalivas, P. ( 1996 ). Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. Journal of Neuroscience, 16, 1550 – 1560. https://doi.org/10.1523/JNEUROSCI.16-04-01550.1996
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.