Show simple item record

Parametric Presburger arithmetic: complexity of counting and quantifier elimination

dc.contributor.authorBogart, Tristram
dc.contributor.authorGoodrick, John
dc.contributor.authorNguyen, Danny
dc.contributor.authorWoods, Kevin
dc.date.accessioned2019-10-30T15:31:40Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-10-30T15:31:40Z
dc.date.issued2019-09
dc.identifier.citationBogart, Tristram; Goodrick, John; Nguyen, Danny; Woods, Kevin (2019). "Parametric Presburger arithmetic: complexity of counting and quantifier elimination." Mathematical Logic Quarterly 65(2): 237-250.
dc.identifier.issn0942-5616
dc.identifier.issn1521-3870
dc.identifier.urihttps://hdl.handle.net/2027.42/151911
dc.description.abstractWe consider an expansion of Presburger arithmetic which allows multiplication by k parameters t1,…,tk. A formula in this language defines a parametric set St⊆Zd as t varies in Zk, and we examine the counting function |St| as a function of t. For a single parameter, it is known that |St| can be expressed as an eventual quasi‐polynomial (there is a period m such that, for sufficiently large t, the function is polynomial on each of the residue classes mod m). We show that such a nice expression is impossible with 2 or more parameters. Indeed (assuming P≠NP) we construct a parametric set St1,t2 such that |St1,t2| is not even polynomial‐time computable on input (t1,t2). In contrast, for parametric sets St⊆Zd with arbitrarily many parameters, defined in a similar language without the ordering relation, we show that |St| is always polynomial‐time computable in the size of t, and in fact can be represented using the gcd and similar functions.
dc.publisherAmerican Mathematical Society
dc.publisherWiley Periodicals, Inc.
dc.titleParametric Presburger arithmetic: complexity of counting and quantifier elimination
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151911/1/malq201800068_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151911/2/malq201800068.pdf
dc.identifier.doi10.1002/malq.201800068
dc.identifier.sourceMathematical Logic Quarterly
dc.identifier.citedreferenceL. van den Dries and J. Holly, Quantifier elimination for modules with scalar variables, Ann. Pure Appl. Log. 57, 161 – 179 ( 1992 ).
dc.identifier.citedreferenceK. Woods, The unreasonable ubiquitousness of quasi‐polynomials, Electron. J. Comb. 21 ( 1 ), P1. 44 ( 2014 ).
dc.identifier.citedreferenceK. Woods, Presburger arithmetic, rational generating functions, and quasi‐polynomials, J. Symb. Log. 80 ( 2 ), 433 – 449 ( 2015 ).
dc.identifier.citedreferenceA. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 ( 4 ), 769 – 779 ( 1994 ).
dc.identifier.citedreferenceA. Barvinok and K. Woods, Short rational generating functions for lattice point problems, J. Amer. Math. Soc. 16 ( 4 ), 957 – 979 ( 2003 ).
dc.identifier.citedreferenceT. Bogart, J. Goodrick, and K. Woods, Parametric Presburger arithmetic: logic, combinatorics, and quasi‐polynomial behavior, Discrete Anal. 2017 ( 4 ) ( 2017 ).
dc.identifier.citedreferenceA. Church, An unsolvable problem of elementary number theory, Amer. J. Math. 58, 345 – 63 ( 1936 ).
dc.identifier.citedreferenceM. Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Mon. 80 ( 3 ), 233 – 269 ( 1973 ).
dc.identifier.citedreferenceM. J. Fischer and M. O. Rabin, Super‐exponential complexity of Presburger arithmetic, in: Complexity of Computation, Proceedings of a Symposium Held in New York City, April 18–19, 1973, edited by R. M. Karp, SIAM‐AMS Proceedings Vol. 7 ( American Mathematical Society, 1974 ), pp. 27 – 41.
dc.identifier.citedreferenceP. Glivický and P. Pudlák, A wild model of linear arithmetic and discretely ordered modules, Math. Log. Q. 63 ( 6 ), 501 – 508 ( 2017 ).
dc.identifier.citedreferenceE. Grädel, Subclasses of Presburger arithmetic and the polynomial‐time hierarchy, Theoret. Comput. Sci. 56 ( 3 ), 289 – 301 ( 1988 ).
dc.identifier.citedreferenceO. Karpenkov, Geometry of Continued Fractions, Algorithms and Computation in Mathematics Vol. 26 ( Springer, 2013 ).
dc.identifier.citedreferenceD. Nguyen and I. Pak, Short Presburger arithmetic is hard, in: Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science, held in Berkeley, California, October 15–17, 2017, edited by C. Ulmans ( IEEE Computer Society, 2017 ), pp. 37 – 48.
dc.identifier.citedreferenceD. C. Oppen, A 2 2 2 p n upper bound on the complexity of Presburger arithmetic, J. Comput. System Sci. 16 ( 3 ), 323 – 332 ( 1978 ).
dc.identifier.citedreferenceA. Schrijver, Theory of Linear and Integer Programming, Wiley‐Interscience Series in Discrete Math. ( Wiley, 1986 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.