Show simple item record

Lake Michigan’s suitability for bigheaded carp: The importance of diet flexibility and subsurface habitat

dc.contributor.authorAlsip, Peter J.
dc.contributor.authorZhang, Hongyan
dc.contributor.authorRowe, Mark D.
dc.contributor.authorMason, Doran M.
dc.contributor.authorRutherford, Edward S.
dc.contributor.authorRiseng, Catherine M.
dc.contributor.authorSu, Zhenming
dc.date.accessioned2019-11-12T16:21:08Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-11-12T16:21:08Z
dc.date.issued2019-11
dc.identifier.citationAlsip, Peter J.; Zhang, Hongyan; Rowe, Mark D.; Mason, Doran M.; Rutherford, Edward S.; Riseng, Catherine M.; Su, Zhenming (2019). "Lake Michigan’s suitability for bigheaded carp: The importance of diet flexibility and subsurface habitat." Freshwater Biology 64(11): 1921-1939.
dc.identifier.issn0046-5070
dc.identifier.issn1365-2427
dc.identifier.urihttps://hdl.handle.net/2027.42/151968
dc.description.abstractAs bighead (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix)—collectively bigheaded carp (BHC)—arrive at Lake Michigan’s doorstep, questions remain as to whether there is sufficient food to support these invasive filter‐feeding fishes in the upper Laurentian Great Lakes. Previous studies suggest that suitable BHC habitat is limited to a few productive, nearshore areas. However, those studies did not consider the influence of BHC’s diet plasticity or the presence of spatially‐discrete subsurface prey resources. This study aimed to characterise Lake Michigan’s suitability for BHC and evaluate the importance of these considerations in habitat suitability assessments.We used simulated outputs of prey biomass (phytoplankton, zooplankton, and detritus) and water temperature from a three‐dimensional biophysical model of Lake Michigan to evaluate growth rate potential (GRP, quantitative index of habitat suitability) of adult BHC throughout the entire volume of the lake. Our GRP model applied a foraging model and a bioenergetics model to translate prey concentrations and water temperatures into habitat quality indexed by individual fish growth rate. We defined suitable habitat as habitats that can support GRP ≥ 0 g g−1 day−1. We developed six feeding scenarios to evaluate the impact of diet flexibility and subsurface prey resources on suitable habitat quantity. Scenarios were defined by the number of prey types the fish could consume and the depths at which they could feed (surface or whole water column).Consistent with previous studies, we found that habitats with the highest quality were concentrated near river mouths and in eutrophic areas of Green Bay. However, in contrast to previous studies, we found suitable offshore habitat for bighead carp owing to our added considerations of diet plasticity and subsurface prey resources. For silver carp, these considerations extended suitable habitat within Green Bay and in some tributary‐influenced nearshore areas, but offshore areas remained predominantly unsuitable in all feeding scenarios. Differences in simulated habitat suitability between these two species probably reflect differences in energy density and mass of the specific fishes we used in our model. However, reports of these two species in environments where they coexist indicate that bighead carp grow at faster rates than silver carp, as our model simulated.Our vertical analysis at Muskegon, MI, U.S.A. indicates that subsurface temperature and prey biomass are not only sufficient to support bighead carp growth but provide maximum habitat quality during late summer stratification.Overall, our study demonstrates that BHC are capable of surviving and growing in much larger areas of Lake Michigan than predicted by previous studies, and thus suggests that the risk of establishment is not sufficiently reduced by low plankton concentrations. Maps generated by our model identified the potential for cross‐lake migration corridors that may facilitate and accelerate lake‐wide movements. We believe these maps could be used to prioritise surveillance protocols by identifying areas to which BHC might spread upon entering the lake. More broadly, this research demonstrates how the physiology and trophic ecology of BHC contributes to their high invasive capacity and can permit their survival in novel environments.
dc.publisherU.S. Environmental Protection Agency
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhabitat suitability
dc.subject.otherinvasive species
dc.subject.otherAsian carp
dc.subject.othergrowth rate potential
dc.subject.otherLaurentian Great Lakes
dc.titleLake Michigan’s suitability for bigheaded carp: The importance of diet flexibility and subsurface habitat
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151968/1/fwb13382_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151968/2/fwb13382.pdf
dc.identifier.doi10.1111/fwb.13382
dc.identifier.sourceFreshwater Biology
dc.identifier.citedreferencePeters, R. H., & Downing, J. A. ( 1984 ). Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography, 29, 763 – 784.
dc.identifier.citedreferenceNapiórkowska‐Krzebietke, A., Szostek, A., Szczepkowska, B., & Błocka, B. ( 2012 ). Thermal and oxygen conditions in lakes under restoration following the removal of herbivorous and seston‐filtering fish. Archives of Polish Fisheries, 20, 39 – 50.
dc.identifier.citedreferenceNational Oceanic and Atmospheric Administration (NOAA) Great Lakes CoastWatch Program ( 2018 ). Retrieved from https://coastwatch.glerl.noaa.gov/
dc.identifier.citedreferenceNuevo, M., Sheehan, R. J., & Willis, P. S. ( 2004 ). Age and growth of the bighead carp Hypophthalmichthys nobilis (Richardson 1845) in the middle Mississippi River. Archiv für Hydrobiologie, 160, 215 – 230.
dc.identifier.citedreferencePendleton, R. M., Schwinghamer, C., Solomon, L. E., & Casper, A. F. ( 2017 ). Competition among river planktivores: Are native planktivores still fewer and skinnier in response to the Silver Carp invasion? Environmental Biology of Fishes, 100, 1213 – 1222.
dc.identifier.citedreferencePettitt‐Wade, H., Wellband, K. W., Heath, D. D., & Fisk, A. T. ( 2015 ). Niche plasticity in invasive fishes in the Great Lakes. Biological Invasions, 17, 2565 – 2580.
dc.identifier.citedreferencePlumb, J. M., Blanchfield, P. J., & Abrahams, M. V. ( 2014 ). A dynamic‐bioenergetics model to assess depth selection and reproductive growth by lake trout ( Salvelinus namaycush ). Oecologia, 175, 549 – 563.
dc.identifier.citedreferencePothoven, S. A., & Fahnenstiel, G. L. ( 2013 ). Recent change in summer chlorophyll a dynamics of southeastern Lake Michigan. Journal of Great Lakes Research, 39, 287 – 294.
dc.identifier.citedreferenceRadke, R. J., & Kahl, U. ( 2002 ). Effects of a filter‐feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto‐ and zooplankton in a mesotrophic reservoir: Results from an enclosure experiment. Freshwater Biology, 47, 2337 – 2344.
dc.identifier.citedreferenceReed, E. M. ( 2017 ). Nearshore Zooplankton communities of Lake Michigan and implications for invasibility by Asian carp. Champaign, IL: University of Illinois at Urbana‐Champaign.
dc.identifier.citedreferenceRosaen, A. L., Grover, E. A., & Spencer, C. W. ( 2012 ). The costs of aquatic invasive species to Great Lakes States. Retrieved from https://www.andersoneconomicgroup.com/Portals/0/upload/AEG%20Report%20-%20AIS%20Econ%20Impact-Final.pdf
dc.identifier.citedreferenceRossmann, R. ( 2006 ). Results of the Lake Michigan Mass Balance Project: Polychlorinated Biphenyls Modeling Report. Washington, D.C.: U.S. Environmental Protection Agency, EPA/600/R-04/167,2006.
dc.identifier.citedreferenceRowe, M. D., Anderson, E. J., Vanderploeg, H. A., Pothoven, S. A., Elgin, A. K., Wang, J., & Yousef, F. ( 2017 ). Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: A biophysical modeling study. Limnology and Oceanography, 62, 2629 – 2649.
dc.identifier.citedreferenceRowe, M. D., Anderson, E. J., Wang, J., & Vanderploeg, H. A. ( 2015 ). Modeling the effect of invasive quagga mussels on the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research, 41, 49 – 65.
dc.identifier.citedreferenceSampson, S. J., Chick, J. H., & Pegg, M. A. ( 2009 ). Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biological Invasions, 11, 483 – 496.
dc.identifier.citedreferenceSass, G. G., Hinz, C., Erickson, A. C., McClelland, N. N., McClelland, M. A., & Epifanio, J. M. ( 2014 ). Invasive bighead and silver carp effects on zooplankton communities in the Illinois River, Illinois, USA. Journal of Great Lakes Research, 40, 911 – 921.
dc.identifier.citedreferenceSheng, D., & Ma, K. ( 2008 ). The influence of the hunger upon the Hypophthalmichthys molitrix appearance form. Journal of Zhoukou Normal University, 25, 83 – 84. (in Chinese).
dc.identifier.citedreferenceSmith, D. W. ( 1989 ). The feeding selectivity of silver carp, Hypophthalmichthys molitrix Val. Journal of Fish Biology, 34, 819 – 828.
dc.identifier.citedreferenceThomas, S. M., Chick, J. H., & Czesny, S. J. ( 2017 ). Underestimation of microzooplankton is a macro problem: One size fits all zooplankton sampling needs alterations. Journal of Great Lakes Research, 43, 91 – 101.
dc.identifier.citedreferenceTumolo, B. B., & Flinn, M. B. ( 2017 ). Top‐down effects of an invasive omnivore: Detection in long‐term monitoring of large‐river reservoir chlorophyll‐a. Oecologia, 185, 293 – 303.
dc.identifier.citedreferenceVanderploeg, H. A., Liebig, J. R., Nalepa, T. F., Fahnenstiel, G. L., & Pothoven, S. A. ( 2010 ). Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research, 36, 50 – 59.
dc.identifier.citedreferenceVanderploeg, H. A., Pothoven, S. A., Fahnenstiel, G. L., Cavaletto, J. F., Liebig, J. R., Stow, C. A., … Bunnell, D. B. ( 2012 ). Seasonal zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition. Journal of Great Lakes Research, 38, 336 – 352.
dc.identifier.citedreferenceWang, J. Q., Flickinger, S. A., Be, K., Liu, Y., & Xu, H. ( 1989 ). Daily food consumption and feeding rhythm of silver carp ( Hypophthalmichthys molitrix ) during fry to fingerling period. Aquaculture, 83, 73 – 79.
dc.identifier.citedreferenceWarner, D. M., & Lesht, B. M. ( 2015 ). Relative importance of phosphorus, invasive mussels and climate for patterns in chlorophyll a and primary production in Lakes Michigan and Huron. Freshwater Biology, 60, 1029 – 1043.
dc.identifier.citedreferenceWeiperth, A., Ferincz, A., Kováts, N., Levente, H., Staszny Keresztessy, K., … Gábor, P. ( 2014 ). Effect of water level fluctuations on fishery and anglers’ catch data of economically utilised fish species of lake Balaton between 1901‐2011. Applied Ecology and Environmental Research, 12, 221 – 249.
dc.identifier.citedreferenceWilliamson, C. J., & Garvey, J. E. ( 2005 ). Growth, fecundity, and diets of newly established silver carp in the middle Mississippi River. Transactions of the American Fisheries Society, 134, 1423 – 1430.
dc.identifier.citedreferenceZánkai, P. N., & Ponyi, J. E. ( 1986 ). Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake (Lake Balaton, Hungary). Hydrobiologia, 135, 131 – 147.
dc.identifier.citedreferenceZhang, H., Mason, D. M., Stow, C. A., Adamack, A. T., Brandt, S. B., Zhang, X., … Ludsin, S. A. ( 2014 ). Effects of hypoxia on habitat quality of pelagic planktivorous fishes in the northern Gulf of Mexico. Marine Ecology Progress Series, 505, 209 – 226.
dc.identifier.citedreferenceACRCC ( 2016 ). Asian Carp Action Plan for Fiscal Year 2017. Retrieved from https://asiancarp.us/PlansReports.html
dc.identifier.citedreferenceAnderson, K. R., Chapman, D. C., & Hayer, C.‐A. ( 2016 ). Assessment of dreissenid biodeposits as a potential food resource for invasive Asian carp. BioInvasions Records, 5, 251 – 257.
dc.identifier.citedreferenceAnderson, K. R., Chapman, D. C., Wynne, T. T., Masagounder, K., & Paukert, C. P. ( 2015 ). Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing. Journal of Great Lakes Research, 41, 358 – 366.
dc.identifier.citedreferenceAnderson, K. R., Chapman, D. C., Wynne, T. T., & Paukert, C. P. ( 2017 ). Assessment of phytoplankton resources suitable for bigheaded carps in Lake Michigan derived from remote sensing and bioenergetics. Journal of Great Lakes Research, 43, 90 – 99.
dc.identifier.citedreferenceBartell, S. M., Breck, J. E., Gardner, R. H., & Brenkert, A. L. ( 1986 ). Individual parameter perturbation and error analysis of fish bioenergetics models. Canadian Journal of Fisheries and Aquatic Sciences, 43, 160 – 168.
dc.identifier.citedreferenceBoros, G., Mozsár, A., Vitál, Z., Nagy, S., & Specziár, A. ( 2014 ). Growth and condition factor of hybrid (Bighead Hypophthalmichthys nobilis Richardson, 1845 x silver carp H. molitrix Valenciennes, 1844) Asian carps in the shallow, oligo‐mesotrophic Lake Balaton. Journal of Applied Ichthyology, 30, 546 – 548.
dc.identifier.citedreferenceBottrell, H. H., Duncan, A., Gliwicz, Z. M., Grygierek, E., Herzig, A., Hillbricht‐Ilkowska, A., … Weglenska, T. ( 1976 ). A review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 24, 419 – 456.
dc.identifier.citedreferenceBowen, S. H., Lutz, E. V., & Ahlgren, M. O. ( 1995 ). Dietary protein and energy as determinants of food quality: Trophic strategies compared. Ecology, 76, 899 – 907.
dc.identifier.citedreferenceBowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., … Chamberlin, C. E. ( 1985 ). Rates, constants, and kinetics formulations in surface water quality modeling ( 2nd ed. ). Athens GA: U.S. Environmental Protection Agency.
dc.identifier.citedreferenceBramburger, A. J., & Reavie, E. D. ( 2016 ). A comparison of phytoplankton communities of the deep chlorophyll layers and epilimnia of the Laurentian Great Lakes. Journal of Great Lakes Research, 42, 1016 – 1025.
dc.identifier.citedreferenceBrandt, S. B., Mason, D. M., & Patrick, V. E. ( 1992 ). Spatially‐explicit models of fish growth rate. Fisheries, 17, 23 – 35.
dc.identifier.citedreferenceBreck, J. E. ( 2008 ). Enhancing bioenergetics models to account for dynamic changes in fish body composition and energy density. Transactions of the American Fisheries Society, 137, 340 – 356.
dc.identifier.citedreferenceBukaveckas, P. A., MacDonald, A., Aufdenkampe, A., Chick, J. H., Havel, J. E., Schultz, R., … Taylor, D. ( 2011 ). Phytoplankton abundance and contributions to suspended particulate matter in the Ohio, Upper Mississippi and Missouri Rivers. Aquatic Sciences, 73, 419 – 436.
dc.identifier.citedreferenceCalkins, H. A., Tripp, S. J., & Garvey, J. E. ( 2012 ). Linking silver carp habitat selection to flow and phytoplankton in the Mississippi River. Biological Invasions, 14, 949 – 958.
dc.identifier.citedreferenceCarrick, H. J., Butts, E., Daniels, D., Fehringer, M., Frazier, C., Fahnenstiel, G. L., … Vanderploeg, H. A. ( 2015 ). Variation in the abundance of pico, nano, and microplankton in Lake Michigan: Historic and basin‐wide comparisons. Journal of Great Lakes Research, 41, 66 – 74.
dc.identifier.citedreferenceChen, S. ( 1982 ). Studies on the feeding spectrum of silver carp and bighead carp fingerling in Lake Donghu (China). Reservoir Fisheries of China, 3, 21 – 26. (in Chinese).
dc.identifier.citedreferenceChen, C., Beardsley, R. C., & Cowles, G. ( 2006 ). An unstructured grid, finite volume coastal ocean model (FVCOM) system. Oceanography, 19, 78 – 89.
dc.identifier.citedreferenceChen, P., Wiley, E. O., & Mcnyset, K. M. ( 2007 ). Ecological niche modeling as a predictive tool: Silver and bighead carps in North America. Biological Invasions, 9, 43 – 51.
dc.identifier.citedreferenceCooke, S. L., & Hill, W. R. ( 2010 ). Can filter‐feeding Asian carp invade the Laurentian Great Lakes? A bioenergetic modelling exercise. Freshwater Biology, 55, 2138 – 2152.
dc.identifier.citedreferenceCooke, S. L., Hill, W. R., & Meyer, K. P. ( 2009 ). Feeding at different plankton densities alters invasive bighead carp ( Hypophthalmichthys nobilis ) growth and zooplankton species composition. Hydrobiologia, 625, 185 – 193.
dc.identifier.citedreferenceCoulter, D. P., MacNamara, R., Glover, D. C., & Garvey, J. E. ( 2018 ). Possible unintended effects of management at an invasion front: Reduced prevalence corresponds with high condition of invasive bigheaded carps. Biological Conservation, 221, 118 – 126.
dc.identifier.citedreferenceCremer, M. C., & Smitherman, R. O. ( 1980 ). Food habits and growth of silver and bighead carp in cages and ponds. Aquaculture, 20, 57 – 64.
dc.identifier.citedreferenceCuddington, K., Currie, W. J. S., & Koops, M. A. ( 2014 ). Could an Asian carp population establish in the Great Lakes from a small introduction? Biological Invasions, 16, 903 – 917.
dc.identifier.citedreferenceCuhel, R. L., & Aguilar, C. ( 2013 ). Ecosystem transformations of the Laurentian great Lake Michigan by nonindigenous biological invaders. Annual Review of Marine Science, 5, 289 – 320.
dc.identifier.citedreferenceCurrie, W. J. S., Cuddington, K. M. D., Stewart, T. J., Zhang, H., & Koops, M. A. ( 2012 ) Modelling spread, establishment and impact of bighead and silver carps in the Great Lakes. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/113 3848, vi + 74.
dc.identifier.citedreferenceDe Stasio, B. T., Schrimpf, M. B., & Cornwell, B. H. ( 2014 ). Phytoplankton communities in Green Bay, Lake Michigan after invasion by dreissenid mussels: Increased dominance by cyanobacteria. Diversity, 6, 681 – 704.
dc.identifier.citedreferenceDeboer, J. A., Anderson, A. M., & Casper, A. F. ( 2018 ). Multi‐trophic response to invasive silver carp ( Hypophthalmichthys molitrix ) in a large floodplain river. Freshwater Biology, 597 – 611.
dc.identifier.citedreferenceDeGrandchamp, K. L., Garvey, J. E., & Colombo, R. E. ( 2008 ). Movement and habitat selection by invasive Asian carps in a large river. Transactions of the American Fisheries Society, 137, 45 – 56.
dc.identifier.citedreferenceDegrandchamp, K. L., Garvey, J. E., & Csoboth, L. A. ( 2007 ). Linking adult reproduction and larval density of invasive carp in a large river. Transactions of the American Fisheries Society, 136, 1327 – 1334.
dc.identifier.citedreferenceDong, S., & Li, D. ( 1994 ). Comparative studies on the feeding selectivity of silver carp Hypophthalmichthys molitrix and bighead carp Aristichthys nobilis. Journal of Fish Biology, 44, 621 – 626.
dc.identifier.citedreferenceFahnenstiel, G. L., & Carrick, H. J. ( 1992 ). Phototrophic Picoplankton in Lakes Huron and Michigan: Abundance, distribution, composition, and contribution to biomass and production. Canadian Journal of Fisheries and Aquatic Sciences, 49, 379 – 388.
dc.identifier.citedreferenceFahnenstiel, G. L., Chandler, J. F., Carrick, H. J., & Scavia, D. ( 1989 ). Photosynthetic characteristics of phytoplankton communities in lakes Huron and Michigan: P‐I parameters and end‐products. Journal of Great Lakes Research, 15, 394 – 407.
dc.identifier.citedreferenceFahnenstiel, G., Nalepa, T., Pothoven, S., Carrick, H., & Scavia, D. ( 2010 ). Lake Michigan lower food web: Long‐term observations and Dreissena impact. Journal of Great Lakes Research, 36, 1 – 4.
dc.identifier.citedreferenceGarvey, J. E., Sass, G. G., Trushenski, J., Glover, D., Brey, M. K., Charlebois, P. M., … Fritts, M. W. ( 2015 ) Fishing down the bighead and silver carps: Reducing the risk of invasion to the great lakes. Project Completion Report. U.S. Fish and Wildlife Service and the Illinois Department of Natural Resources.
dc.identifier.citedreferenceGörgényi, J., Boros, G., Vitál, Z., Mozsár, A., Várbíró, G., Vasas, G., & Borics, G. ( 2016 ). The role of filter‐feeding Asian carps in algal dispersion. Hydrobiologia, 764, 115 – 126.
dc.identifier.citedreferenceHanson, P. C., Johnson, T. B., Schindler, D. E., & Kitchell, J. F. ( 1997 ). Fish Bioenergetics 3.0 Technical Report WISCU‐97‐001. Madison, WI: University of Wisconsin, Sea Grant Institute.
dc.identifier.citedreferenceHarris, B. S., Ruetz, C. R., Wieten, A. C., Altenritter, M. E., & Smith, K. M. ( 2017 ). Characteristics of lake sturgeon Acipenser fulvescens Rafinesque, 1817 in a tributary of Lake Michigan, USA: Status of the Muskegon River population. Journal of Applied Ichthyology, 33, 338 – 346.
dc.identifier.citedreferenceHartman, K. J., & Brandt, S. B. ( 1995 ). Estimating energy density of fish. Transactions of the American Fisheries Society, 124, 347 – 355.
dc.identifier.citedreferenceHecky, R. E., Smith, R. E. H., Barton, D. R., Guildford, S. J., Taylor, W. D., Charlton, M. N., & Howell, T. ( 2004 ). The nearshore phosphorus shunt: A consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1285 – 1293.
dc.identifier.citedreferenceHerborg, L.‐M., Mandrak, N. E., Cudmore, B. C., & MacIsaac, H. J. ( 2007 ). Comparative distribution and invasion risk of snakehead (Channidae) and Asian carp (Cyprinidae) species in North America. Canadian Journal of Fisheries and Aquatic Sciences, 64, 1723 – 1735.
dc.identifier.citedreferenceInternational Joint Commission. ( 2018 ) Second Binational Great Lakes Basin Poll. Retrieved from https://legacyfiles.ijc.org/tinymce/uploaded/WQB/WQB_Second_Poll_Report.pdf
dc.identifier.citedreferenceIrons, K. S., Sass, G. G., McClelland, M. A., & Stafford, J. D. ( 2007 ). Reduced condition factor of two native fish species coincident with invasion of non‐native Asian carps in the Illinois River, U.S.A. Is this evidence for competition and reduced fitness? Journal of Fish Biology, 71, 258 – 273.
dc.identifier.citedreferenceJanetski, D. J., Ruetz, C. R., Bhagat, Y., & Clapp, D. F. ( 2013 ). Recruitment dynamics of age‐0 yellow perch in a drowned river Mouth Lake: Assessing synchrony with Nearshore Lake Michigan. Transactions of the American Fisheries Society, 142, 505 – 514.
dc.identifier.citedreferenceJerde, C. L., Bampfylde, C. J., & Lewis, M. A. ( 2009 ). Chance establishment for sexual, semelparous species: Overcoming the Allee effect. The American Naturalist, 173, 734 – 746.
dc.identifier.citedreferenceJi, R., Davis, C., Chen, C., & Beardsley, R. ( 2008 ). Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank: A 3‐D biological‐physical modeling study. Journal of Marine Systems, 73, 31 – 47.
dc.identifier.citedreferenceKe, Z., Xie, P., & Guo, L. ( 2008 ). In situ study on effect of food competition on diet shifts and growth of silver and bighead carps in large biomanipulation fish pens in Meiliang Bay, Lake Taihu. Journal of Applied Ichthyology, 24, 263 – 268.
dc.identifier.citedreferenceKocovsky, P. M., Chapman, D. C., & McKenna, J. E. ( 2012 ). Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps. Journal of Great Lakes Research, 38, 159 – 166.
dc.identifier.citedreferenceKolar, C. S., Chapman, D. C., Courtenay, W. R., Housel, C. M., Williams, J. D., & Jennings, D. ( 2007 ) Bigheaded carps— A biological synopsis and environmental risk assessment. Bethesda, MD: American Fisheries Society.
dc.identifier.citedreferenceLi, S. F., Yang, H. Q., & Lu, W. M. ( 1980 ). Preliminary research on diurnal feeding rhythm and the daily ration for silver carp, bighead carp and grass carp. Journal of Fisheries of China, 4, 275 – 283. (in Chinese).
dc.identifier.citedreferenceLuo, J., Hartman, K. J., Brandt, S. B., Cerco, C. F., & Rippetoe, T. H. ( 2001 ). A spatially‐explicit approach for estimating carrying capacity: An application for the Atlantic Menhaden ( Brevoortia tyrannus ) in Chesapeake Bay. Estuaries, 24, 545.
dc.identifier.citedreferenceMadenjian, C. P. ( 1995 ). Removal of algae by the zebra mussel ( Dreissena polymorpha ) population in western Lake Erie: A bioenergetics approach. Canadian Journal of Fisheries and Aquatic Sciences, 52, 381 – 390.
dc.identifier.citedreferenceMadenjian, C. P., Bunnell, D. B., Desorcie, T. J., Chriscinske, M. A., Kostich, M. J., & Adams, J. V. ( 2012 ). Status and Trends of Prey Fish Population in Lake Michigan, 2011. Ann Arbor, MI: U.S. Geological Survey, Great Lakes Science Center.
dc.identifier.citedreferenceMadenjian, C. P., Pothoven, S. A., Dettmers, J. M., & Holuszko, J. D. ( 2006 ). Changes in seasonal energy dynamics of alewife ( Alosa pseudoharengus ) in Lake Michigan after invasion of dreissenid mussels. Canadian Journal of Fisheries and Aquatic Sciences, 63, 891 – 902.
dc.identifier.citedreferenceMadenjian, C. P., Rutherford, E. S., Stow, C. A., Roseman, E. F., & He, J. X. ( 2013 ). Trophic shift, not collapse. Environmental Science and Technology, 47, 11915 – 11916.
dc.identifier.citedreferenceMason, D. M., & Brandt, S. B. ( 1996 ). Effects of spatial scale and foraging efficiency on the predictions made by spatially‐explicit models of fish growth rate potential. Environmental Biology of Fishes, 45, 283 – 298.
dc.identifier.citedreferenceMason, D. M., Goyke, A., & Brandt, S. B. ( 1995 ). A spatially explicit bioenergetics measure of habitat quality for adult salmonines: Comparison between Lakes Michigan and Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 52, 1572 – 1583.
dc.identifier.citedreferenceMozsár, A., Specziár, A., Battonyai, I., Borics, G., Görgényi, J., Horváth, H., & Boros, G. ( 2017 ). Influence of environmental factors and individual traits on the diet of non‐native hybrid bigheaded carp ( Hypophthalmichthys molitrix  ×  H. nobilis ) in Lake Balaton. Hungary. Hydrobiologia, 794, 317 – 332.
dc.identifier.citedreferenceMurphy, E. A., & Jackson, P. R. ( 2013 ) Hydraulic and water‐quality data collection for the investigation of great lakes tributaries for Asian carp spawning and egg‐transport suitability. Scientific Investigations Report 2013-5106. U.S. Geological Survey.
dc.identifier.citedreferenceNalepa, T. F., Fanslow, D. L., & Lang, G. A. ( 2009 ). Transformation of the offshore benthic community in Lake Michigan: Recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugensis. Freshwater Biology, 54, 466 – 479.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.