Show simple item record

Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis

dc.contributor.authorEngebretson, M. J.
dc.contributor.authorPilipenko, V. A.
dc.contributor.authorAhmed, L. Y.
dc.contributor.authorPosch, J. L.
dc.contributor.authorSteinmetz, E. S.
dc.contributor.authorMoldwin, M. B.
dc.contributor.authorConnors, M. G.
dc.contributor.authorWeygand, J. M.
dc.contributor.authorMann, I. R.
dc.contributor.authorBoteler, D. H.
dc.contributor.authorRussell, C. T.
dc.contributor.authorVorobev, A. V.
dc.date.accessioned2019-11-12T16:21:11Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-11-12T16:21:11Z
dc.date.issued2019-09
dc.identifier.citationEngebretson, M. J.; Pilipenko, V. A.; Ahmed, L. Y.; Posch, J. L.; Steinmetz, E. S.; Moldwin, M. B.; Connors, M. G.; Weygand, J. M.; Mann, I. R.; Boteler, D. H.; Russell, C. T.; Vorobev, A. V. (2019). "Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis." Journal of Geophysical Research: Space Physics 124(9): 7442-7458.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/151970
dc.description.abstractThe rapid changes of magnetic fields associated with large, isolated magnetic perturbations with amplitudes |ΔB| of hundreds of nanotesla and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents statistical summaries of the characteristics of nightside magnetic perturbation events observed in Eastern Arctic Canada from 2014 through 2017 using data from stations that are part of four magnetometer arrays: MACCS, AUTUMNX, CANMOS, and CARISMA, covering a range of magnetic latitudes from 68 to 78°. Most but not all of the magnetic perturbation events were associated with substorms: roughly two thirds occurred between 5 and 30 min after onset. The association of intense nighttime magnetic perturbation events with magnetic storms was significantly reduced at latitudes above 73°, presumably above the nominal auroral oval. A superposed epoch study of 21 strong events at Cape Dorset showed that the largest |dB/dt| values appeared within an ~275‐km radius that was associated with a region of shear between upward and downward field‐aligned currents. The statistical distributions of impulse amplitudes of both |ΔB| and |dB/dt| fit well the log‐normal distribution at all stations. The |ΔB| distributions are similar over the magnetic latitude range studied, but the kurtosis and skewness of the |dB/dt| distributions show a slight increase with latitude. Knowledge of the statistical characteristics of these events has enabled us to estimate the occurrence probability of extreme impulsive disturbances using the approximation of a log‐normal distribution.Key PointsMost intense events were associated with substorms; their association with magnetic storms was much lower above 73° MLATLargest |dB/dt| values appeared within an ~275‐km radius associated with a region of shear between upward and downward field‐aligned currentsThe statistical distributions of impulse amplitudes of both |ΔX| and |dX/dt| fit well the log‐normal distribution but varied with latitude
dc.publisherWiley Periodicals, Inc.
dc.publisherAGU
dc.subject.othersubstorms
dc.subject.othermagnetic storms
dc.subject.othergeomagnetically induced currents
dc.subject.othermagnetic impulse events
dc.titleNighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151970/1/jgra55199_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151970/2/jgra55199.pdf
dc.identifier.doi10.1029/2019JA026794
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePulkkinen, A., Pirjola, R., & Viljanen, A. ( 2008 ). Statistics of extreme geomagnetically induced current events. Space Weather, 6, S07001. https://doi.org/10.1029/2008SW000388
dc.identifier.citedreferenceConnors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth, Planets and Space, 68 ( 1 ). https://doi.org/10.1186/s40623‐015‐0354‐4
dc.identifier.citedreferenceConsolini, G., & De Michelis, P. ( 1998 ). Non‐Gaussian distribution function of AE index fluctuations: Evidence for time intermittency. Geophysical Research Letters, 25 ( 21 ), 4087 – 4090. https://doi.org/10.1029/1998GL900073
dc.identifier.citedreferenceEngebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J. Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100 ( A10 ), 19,371 – 19,386. https://doi.org/10.1029/95JA00768
dc.identifier.citedreferenceEngebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., Boteler, D. H., Mann, I. R., Hartinger, M. D., Weygand, J. M., Lyons, L. R., Nishimura, Y., Singer, H. J., Ohtani, S., Russell, C. T., Fazakerley, A., & Kistler, L. M. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026797
dc.identifier.citedreferenceEngebretson, M. J., Yeoman, T. K., Oksavik, K., Søraas, F., Sigernes, F., Moen, J. I., Johnsen, M. G., Pilipenko, V. A., Posch, J. L., Lessard, M. R., Lavraud, B., Hartinger, M. D., Clausen, L. B. N., Raita, T., & Stolle, C. ( 2013 ). Multi‐instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. Journal of Geophysical Research: Space Physics, 118, 2975 – 2997. https://doi.org/10.1002/jgra.50291
dc.identifier.citedreferenceFriis‐Christensen, E., McHenry, M. A., Clauer, C. R., & Vennerstrøm, S. ( 1988 ). Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind. Geophysical Research Letters, 15 ( 3 ), 253 – 256. https://doi.org/10.1029/GL015i003p00253
dc.identifier.citedreferenceKappenman, J. G. ( 2005 ). An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun‐earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3, S08C01. https://doi.org/10.1029/2004SW000128
dc.identifier.citedreferenceKataoka, R., Fukunishi, H., & Lanzerotti, L. J. ( 2003 ). Statistical identification of solar wind origins of magnetic impulse events. Journal of Geophysical Research, 108 ( A12 ), 1436. https://doi.org/10.1029/2003JA010202
dc.identifier.citedreferenceKnipp, D. J. ( 2015 ). Synthesis of geomagnetically induced currents: Commentary and research. Space Weather, 13, 727 – 729. https://doi.org/10.1002/2015SW001317
dc.identifier.citedreferenceKozak, L. V., Petrenko, B. A., Lui, A. T. Y., Kronberg, E. A., Grigorenko, E. E., & Prokhorenkov, A. S. ( 2018 ). Turbulent processes in the Earth’s magnetotail: spectral and statistical research. Annales Geophysicae, 36 ( 5 ), 1303 – 1318. https://doi.org/10.5194/angeo‐36‐1303‐2018
dc.identifier.citedreferenceLanglois, P., Bolduci, L., & Chouteau, M. C. ( 1996 ). Probability of occurrence of geomagnetic storms based on a study of the distribution of the electric field amplitudes measured in Abitibi, Quebec, in 1993‐94. Journal of Geomagnetism and Geoelectricity, 48 ( 8 ), 1033 – 1041. https://doi.org/10.5636/jgg.48.1033
dc.identifier.citedreferenceLanzerotti, L. J. ( 2001 ). Space weather effects on technologies. In Space Weather, Geophysical Monograph Series (Vol. 125, pp. 11 – 22 ). Washington, DC: AGU.
dc.identifier.citedreferenceLanzerotti, L. J., Wolfe, A., Trivedi, N., Maclennan, C. G., & Medford, L. V. ( 1990 ). Magnetic impulse events at high latitudes: magnetopause and boundary layer plasma processes. Journal of Geophysical Research, 95 ( A1 ), 97 – 107. https://doi.org/10.1029/JA095iA01p00097
dc.identifier.citedreferenceLyons, L. R., Lee, D.‐Y., Wang, C.‐P., & Mende, S. B. ( 2005 ). Global auroral responses to abrupt solar wind changes: Dynamic pressure, substorm, and null events. Journal of Geophysical Research, 110, A08208. https://doi.org/10.1029/2005JA011089
dc.identifier.citedreferenceMann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C., Murphy, K. R., Parent, A., Usanova, M., Pahud, D. M., Lee, E. A., Amalraj, V., Wallis, D. D., Angelopoulos, V., Glassmeier, K. H., Russell, C. T., Auster, H. U., & Singer, H. J. ( 2008 ). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141 ( 1‐4 ), 413 – 451. https://doi.org/10.1007/s11214‐008‐9457‐6
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061
dc.identifier.citedreferenceNgwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB ∕d t variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911
dc.identifier.citedreferenceNikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386
dc.identifier.citedreferencePulkkinen, A., Hesse, M., Kuznetsova, M., & Rastätter, L. ( 2007 ). First‐principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth. Annales Geophysicae, 25 ( 4 ), 881 – 893. https://doi.org/10.5194/angeo‐25‐881‐2007
dc.identifier.citedreferenceSato, M., Fukunishi, H., Lanzerotti, L. J., & Maclennan, C. G. ( 1999 ). Magnetic impulse events and related Pc1 bursts observed by the Automatic Geophysical Observatories network in Antarctica. Journal of Geophysical Research, 104 ( A9 ), 19,971 – 19,982. https://doi.org/10.1029/1999JA900111
dc.identifier.citedreferenceStepanova, M. V., Antonova, E. E., & Troshichev, O. ( 2003 ). Intermittency of magnetospheric dynamics through non‐Gaussian distribution function of PC‐index fluctuations. Geophysical Research Letters, 30 ( 3 ), 1127. https://doi.org/10.1029/2002GL016070
dc.identifier.citedreferenceViljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24 ( 6 ), 631 – 634. https://doi.org/10.1029/97GL00538
dc.identifier.citedreferenceViljanen, A. ( 1998 ). Relation of geomagnetically induced currents and local geomagnetic field variations. IEEE Transactions on Power Delivery, 13 ( 4 ), 1285 – 1290. https://doi.org/10.1109/61.714497
dc.identifier.citedreferenceViljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24 ( 2 ), 725 – 733. https://doi.org/10.5194/angeo‐24‐725‐2006
dc.identifier.citedreferenceVorobjev, V. G., Zverev, V. L., & Starkov, G. V. ( 1993 ). Geomagnetic impulses in day‐side high latitude region: main morphological characteristics and relation with dynamics of dayside aurora. Geomagnetism and Aeronomy, 33, 69 – 79.
dc.identifier.citedreferenceWeygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., & Mann, I. R. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. https://doi.org/10.1029/2010JA016177
dc.identifier.citedreferenceWeygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Thomson, S. M., McPherron, R. L., Balogh, A., Kistler, L. M., & Goldstein, M. L. ( 2005 ). Plasma sheet turbulence observed by Cluster II. Journal of Geophysical Research, 110, A01205. https://doi.org/10.1029/2004JA010581
dc.identifier.citedreferenceWeygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Walker, R. J., Balogh, A., Kistler, L. M., & Goldstein, M. L. ( 2006 ). Non‐self‐similar scaling of plasma sheet and solar wind probability distribution functions of magnetic field fluctuations. Journal of Geophysical Research, 111, A11209. https://doi.org/10.1029/2006JA011820
dc.identifier.citedreferenceWygant, J. R., Keiling, A., Cattell, C. A., Johnson, M., Lysak, R. L., Temerin, M., Mozer, F. S., Kletzing, C. A., Scudder, J. D., Peterson, W., Russell, C. T., Parks, G., Brittnacher, M., Germany, G., & Spann, J. ( 2000 ). Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet‐tail lobe boundary to UVI images: An energy source for the aurora. Journal of Geophysical Research, 105 ( A8 ), 18,675 – 18,692. https://doi.org/10.1029/1999JA900500
dc.identifier.citedreferenceZhang, J. J., Wang, C., & Tang, B. B. ( 2012 ). Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one‐dimensional method. Space Weather, 10, S05005. https://doi.org/10.1029/2012SW000772
dc.identifier.citedreferenceAmm, O., & Viljanen, A. ( 1999 ). Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems. Earth, Planets and Space, 51 ( 6 ), 431 – 440. https://doi.org/10.1186/BF03352247
dc.identifier.citedreferenceApatenkov, S. V., Sergeev, V. A., Pirjola, R., & Viljanen, A. ( 2004 ). Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Annales Geophysicae, 22 ( 1 ), 63 – 72. https://doi.org/10.5194/angeo‐22‐63‐2004
dc.identifier.citedreferenceBelakhovsky, V. B., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems. Izvestiya Physics of the Solid Earth, 54 ( 1 ), 52 – 65, ISSN 1069‐3513. https://doi.org/10.1134/S1069351318010032
dc.identifier.citedreferenceBoteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22 ( 1 ), 17 – 27. https://doi.org/10.1016/S0273‐1177(97)01096‐X
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.