Show simple item record

Qualitative approach to comparative exposure in alternatives assessment

dc.contributor.authorGreggs, William
dc.contributor.authorBurns, Thomas
dc.contributor.authorEgeghy, Peter
dc.contributor.authorEmbry, Michelle R
dc.contributor.authorFantke, Peter
dc.contributor.authorGaborek, Bonnie
dc.contributor.authorHeine, Lauren
dc.contributor.authorJolliet, Olivier
dc.contributor.authorLee, Carolyn
dc.contributor.authorMuir, Derek
dc.contributor.authorPlotzke, Kathy
dc.contributor.authorRinkevich, Joseph
dc.contributor.authorSunger, Neha
dc.contributor.authorTanir, Jennifer Y
dc.contributor.authorWhittaker, Margaret
dc.date.accessioned2019-11-12T16:21:20Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-11-12T16:21:20Z
dc.date.issued2019-11
dc.identifier.citationGreggs, William; Burns, Thomas; Egeghy, Peter; Embry, Michelle R; Fantke, Peter; Gaborek, Bonnie; Heine, Lauren; Jolliet, Olivier; Lee, Carolyn; Muir, Derek; Plotzke, Kathy; Rinkevich, Joseph; Sunger, Neha; Tanir, Jennifer Y; Whittaker, Margaret (2019). "Qualitative approach to comparative exposure in alternatives assessment." Integrated Environmental Assessment and Management 15(6): 880-894.
dc.identifier.issn1551-3777
dc.identifier.issn1551-3793
dc.identifier.urihttps://hdl.handle.net/2027.42/151974
dc.description.abstractMost alternatives assessments (AAs) published to date are largely hazard‐based rankings, thereby ignoring potential differences in human and/or ecosystem exposures; as such, they may not represent a fully informed consideration of the advantages and disadvantages of possible alternatives. Building on the 2014 US National Academy of Sciences recommendations to improve AA decisions by including comparative exposure assessment into AAs, the Health and Environmental Sciences Institute’s (HESI) Sustainable Chemical Alternatives Technical Committee, which comprises scientists from academia, industry, government, and nonprofit organizations, developed a qualitative comparative exposure approach. Conducting such a comparison can screen for alternatives that are expected to have a higher or different routes of human or environmental exposure potential, which together with consideration of the hazard assessment, could trigger a higher tiered, more quantitative exposure assessment on the alternatives being considered, minimizing the likelihood of regrettable substitution. This article outlines an approach for including chemical ingredient‐ and product‐related exposure information in a qualitative comparison, including ingredient and product‐related parameters. A classification approach was developed for ingredient and product parameters to support comparisons between alternatives as well as a methodology to address exposure parameter relevance and data quality. The ingredient parameters include a range of physicochemical properties that can impact routes and magnitude of exposure, whereas the product parameters include aspects such as product‐specific exposure pathways, use information, accessibility, and disposal. Two case studies are used to demonstrate the application of the methodology. Key learnings and future research needs are summarized. Integr Environ Assess Manag 2018;00:000–000. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)Key PointsAlternatives Assessment (AA) describes the approach to identify, compare, and select safer and more sustainable alternatives to chemicals of concern.Alternatives Assessments have often been hazard‐based rankings used to substitute individual ingredients and may not represent a fully informed consideration of advantages or disadvantages of possible alternative solutions.Chemical alternatives that may have a higher or different route of exposure potential (human or environmental) can be identified via a qualitative exposure approach, which could trigger a higher tiered, more quantitative assessment to minimize the likelihood of regrettable substitution.This work outlines a classification approach for including chemical ingredient‐ and product‐related exposure information to support comparisons between alternatives in a qualitative manner using 2 case studies.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherExposure assessment
dc.subject.otherData selection
dc.subject.otherConsumer products
dc.subject.otherChemical substitution
dc.subject.otherParameter relevance
dc.titleQualitative approach to comparative exposure in alternatives assessment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151974/1/ieam4070.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151974/2/ieam4070_am.pdf
dc.identifier.doi10.1002/ieam.4070
dc.identifier.sourceIntegrated Environmental Assessment and Management
dc.identifier.citedreference[OECD] Organisation for Economic Co‐operation and Development. 2012. The role of government policy in supporting the adoption of green / sustainable chemistry innovations. Paris (FR). [accessed 2018 Apr 17]. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)3&doclanguage=en
dc.identifier.citedreferenceFantke P, Gillespie BW, Juraske R, Jolliet O. 2014. Estimating half‐lives for pesticide dissipation from plants. Environ Sci Technol 48: 8588 – 8602.
dc.identifier.citedreferenceFantke P, Weber R, Scheringer M. 2015. From incremental to fundamental substitution in chemical alternatives assessment. Sustain Chem Pharm 1: 1 – 8.
dc.identifier.citedreferenceGrimm FA, Iwata Y, Sirenko O, Chappell GA, Wright FA, Reif DM, Braisted J, Gerhold DL, Yeakley JM, Shepard P et al. 2016. A chemical‐biological similarity‐based grouping of complex substances as a prototype approach for evaluating chemical alternatives. Green Chem 18: 4407 – 4419.
dc.identifier.citedreferenceHuang L, Ernstoff A, Fantke P, Csiszar SA, Jolliet O. 2016. A review of models for near‐field exposure pathways of chemicals in consumer products. Sci Total Environ 574: 1182 – 1208.
dc.identifier.citedreferenceIsaacs KK, Glen WG, Egeghy P, Goldsmith MR, Smith L, Vallero D, Brooks R, Grulke CM, Ozkaynak H. 2014. SHEDS‐HT: an integrated probabilistic exposure model for prioritizing exposures to chemicals with near‐field and dietary sources. Environ Sci Technol 48: 12750 – 12759.
dc.identifier.citedreferenceJacobs MM, Malloy TF, Tickner JA, Edwards S. 2016. Alternatives assessment frameworks: research needs for the informed substitution of hazardous chemicals. Environ Health Perspect 124: 265 – 280.
dc.identifier.citedreferenceJolliet O, Ernstoff AS, Csiszar SA, Fantke P. 2015. Defining product intake fraction to quantify and compare exposure to consumer products. Environ Sci Technol 49: 8924 – 8931.
dc.identifier.citedreferenceKelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA. 2007. Food web‐specific biomagnification of persistent organic pollutants. Science 317: 236 – 239.
dc.identifier.citedreferenceKlimisch HJ, Andreae M, Tillmann U. 1997. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25: 1 – 5.
dc.identifier.citedreferenceLanters CA, Fantke P. 2018. Structuring complex results using network maps and hierarchical charts. Procedia CIRP 69: 441 – 446. doi: 10.1016/j.procir.2017.11.147
dc.identifier.citedreferenceLeonards PEG, de Boer J. 2004. Synthetic musks in fish and other aquatic organisms. In: Rimkus GG, editor. Series anthropogenic compounds: Synthetic musk fragances in the environment. Berlin (DE): Springer Berlin Heidelberg. p 49–84.
dc.identifier.citedreferenceLittle JC, Weschler CJ, Nazaroff WW, Liu Z, Cohen Hubal EA. 2012. Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. Environ Sci Technol 46: 11171 – 11178.
dc.identifier.citedreference[MA TURI] Massachusetts Toxics Use Reduction Institute. 2013. The commons principles for alternatives assessment. [accessed 2018 March 20]. https://www.turi.org/TURI_Publications/TURI_Chemical_Fact_Sheets/Commons_Principles_for_Alternatives_Assessment
dc.identifier.citedreferenceMackay D, McCarty LS, MacLeod M. 2001. On the validity of classifying chemicals for persistence, bioaccumulation, toxicity, and potential for long‐range transport. Environ Toxicol Chem 20: 1491 –1498.
dc.identifier.citedreference[NRC] National Research Council. 2014a. Case studies. A framework to guide selection of chemical alternatives. Washington (DC): Natl Academies. p 159–194.
dc.identifier.citedreference[NRC] National Research Council. 2014b. A framework to guide selection of chemical alternatives. Washington (DC): Natl Academies.
dc.identifier.citedreference[OECD] Organisation for Economic Co‐operation and Development. 2008. Guidance notes for the estimation of dermal absorption values. Paris (FR). [accessed 2017 Oct 6]. http://www.oecd.org/chemicalsafety/testing/40736824.pdf
dc.identifier.citedreference[OECD] Organisation for Economic Co‐operation and Development. 2009. OECD Cooperative Chemicals Assessment Programme manual for the assessment of chemicals. Paris (FR). [accessed 2017 Oct 6]. http://www.oecd.org/env/ehs/risk‐assessment/manualfortheassessmentofchemicals.htm
dc.identifier.citedreference[OECD] Organisation for Economic Co‐operation and Development. 2016. Substitution and alternative assessment toolbox: Case studies. Paris (FR). [accessed 2017 Oct 6]. http://www.oecdsaatoolbox.org/Home/CaseStudies
dc.identifier.citedreference[RIVM] Netherlands National Institute for Public Health and the Environment. 2016. ConsExpo default database for COSMETICS‐‐Fragrance products‐‐>Eau de toilette‐‐>Application, version 4.1. Bilthoven (NL). [accessed 2017 Oct 6]. http://www.rivm.nl/en/Topics/C/ConsExpo
dc.identifier.citedreference[SUBSPORT] Substitution Support Portal. 2017. Case story database. [accessed 2017 Oct 6]. http://www.subsport.eu/case‐stories‐database
dc.identifier.citedreferenceThomas K. 2014. The ‘no more tears’ shampoo, now with no formaldehyde. New York Times. 2014 Jan 18:A1. http://www.nytimes.com/2014/01/18/business/johnson‐johnson‐takes‐first‐step‐in‐removal‐of‐questionable‐chemicals‐from‐products.html?_r=0
dc.identifier.citedreferenceTulve NS, Suggs JC, McCurdy T, Cohen Hubal EA, Moya J. 2002. Frequency of mouthing behavior in young children. J Expo Anal Environ Epidemiol 12: 259 –264.
dc.identifier.citedreference[UN] United Nations. 2015. Globally harmonized system of classification and labelling of chemicals (GHS). 6th ed. New York (NY). https://www.unece.org/trans/danger/publi/ghs/ghs_rev06/06files_e.html
dc.identifier.citedreference[USEPA] US Environmental Protection Agency. 1992. Framework for ecological risk assessment. Washington (DC). EPA/630/R‐92/001.
dc.identifier.citedreference[USEPA] US Environmental Protection Agency. 1998. Guidelines for ecological risk assessment. Washington (DC). EPA/630/R‐95/002F.
dc.identifier.citedreference[USEPA] US Environmental Protection Agency. 1999. High production volume (HPV) challenge: determining the adequacy of existing data. Washington (DC). [accessed 2017 Oct 6]. http://www.epa.gov/hpv/pubs/general/datadfin.htm
dc.identifier.citedreference[USEPA] US Environmental Protection Agency. 2013. Interpretative assistance document, assessment for discreet organic chemicals, sustainable futures summary assessment. Washington (DC). [accessed 2016 Jul 18]. https://www.epa.gov/sites/production/files/2015‐05/documents/05‐iad_discretes_june2013.pdf
dc.identifier.citedreference[USEPA] US Environmental Protection Agency. 2015. Partnership to evaluate flame retardants in printed circuit boards. Final report. Washington (DC). EPA 744‐R‐15‐001.
dc.identifier.citedreference[USEPA] US Environmental Protection Agency. 2016. Design for the environment alternatives assessments. Washington (DC). [accessed 2017 Oct 6]. https://www.epa.gov/saferchoice/design‐environment‐alternatives‐assessments
dc.identifier.citedreferenceWilliams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G, Shah I, Wambaugh JF, Judson RS et al. 2017. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J Cheminf 9: 61. doi: 10.1186/s13321‐017‐0247‐6
dc.identifier.citedreferenceWirnitzer U, Rickenbacher U, Katerkamp A, Schachtrupp A. 2011. Systemic toxicity of di‐2‐ethylhexyl terephthalate (DEHT) in rodents following four weeks of intravenous exposure. Toxicol Lett 205: 8 – 14.
dc.identifier.citedreferenceXie M, Wu Y, Little JC, Marr LC. 2016. Phthalates and alternative plasticizers and potential for contact exposure from children’s backpacks and toys. J Expo Sci Environ Epidemiol 26: 119 – 124.
dc.identifier.citedreference[ACGIH] American Conference of Governmental Industrial Hygienists. 1993. Threshold limit values for chemical substances and physical agents. Cincinnati (OH).
dc.identifier.citedreferenceAllsopp MW, Vianello G. 2012. Poly(vinyl chloride). In: Elvers B, editor. Ullmann’s encyclopedia of industrial chemistry. Weinheim (DE): Wiley‐VCH. p 441–468.
dc.identifier.citedreferenceArnold SM, Greggs B, Goyak KO, Landenberger BD, Mason AM, Howard B, Zaleski RT. 2017. A quantitative screening‐level approach to incorporate chemical exposure and risk into alternative assessment evaluations. Integr Environ Assess Manag 13 ( 6 ): 1007 – 1022. DOI: 10.1002/ieam.1926
dc.identifier.citedreferenceArnot JA, Mackay D, Parkerton TF, Zaleski RT, Warren CS. 2010. Multimedia modeling of human exposure to chemical substances: the roles of food web biomagnification and biotransformation. Environ Toxicol Chem 29: 45 – 55.
dc.identifier.citedreference[ART] Advanced REACH Tool Project. 2016. Advanced REACH Tool for inhalation, version 1.5. [accessed 2017 Oct 6]. https://www.advancedreachtool.com/
dc.identifier.citedreferenceBecker K, Göen T, Seiwert M, Conrad A, Pick‐Fuss H, Müller J, Wittassek M, Schulz C, Kolossa‐Gehring M. 2009. GerESIV: Phathalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Health 212: 685 – 692.
dc.identifier.citedreferenceCsiszar SA, Ernstoff AS, Fantke P, Jolliet O. 2017. Stochastic modeling of near‐field exposure to parabens in personal care products. J Expo Sci Environ Epidemiol 27: 152 – 159.
dc.identifier.citedreferenceCsiszar SA, Ernstoff AS, Fantke P, Meyer DE, Jolliet O. 2016. High‐throughput exposure modeling to support prioritization of chemicals in personal care products. Chemosphere 163: 490 –498.
dc.identifier.citedreferenceDelmaar J, Park M, van Engelen J. 2005. ConsExpo Consumer Exposure and Uptake Models: Program manual. Bilthoven (NL): Netherlands National Institute for Public Health and the Environment. Report 320104004.
dc.identifier.citedreferenceDionisio KL, Frame AM, Goldsmith M‐R, Wambaugh JF, Liddell A, Cathey T, Smith D, Vail J, Ernstoff A, Fantke P et al. 2015. Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicol Rep 2: 228 –237.
dc.identifier.citedreference[EC] European Commission. 2004. ATP (2004) to the Cosmetics Directive: Commission Directive 2004/88/EC of 7 September 2004 amending Council Directive 76/768/EEC concerning cosmetic products for the purpose of adapting Annex III thereto to technical progress. OJ L 287/5.
dc.identifier.citedreference[ECETOC] European Centre for Ecotoxicology and Toxicology of Chemicals. 2014. ECETOC TRA version 3.1 (June 2014). Auderghem (BE); European Centre for Ecotoxicology and Toxicology of Chemicals. [accessed 2017 Oct 6]. http://www.ecetoc.org/tools/targeted‐risk‐assessment‐tra/
dc.identifier.citedreference[ECHA] European Chemicals Agency. 2018. REACH introduction. [accessed 2018 March 20]. http://ec.europa.eu/environment/chemicals/reach/reach_en.htm
dc.identifier.citedreference[ECHA] European Chemicals Agency. 2017a. Chemical safety assessment and reporting tool (CHESAR). Helsinki (FI). [accessed 2017 Oct 6]. https://chesar.echa.europa.eu/
dc.identifier.citedreference[ECHA] European Chemicals Agency. 2017b. TC NES Subgroup on Identification of PBT and vPvB Substances, Results of the Evaluation of the PBT/vPvB Properties of 5‐tert‐butyl‐2,4,6‐trinitro‐m‐xylene. PBT Working Group ‐ PBT List No. 126. Helsinki (FI). 13 January 2017. [accessed 2017 Oct 6]. https://echa.europa.eu/documents/10162/735927ed‐bd75‐4997‐8726‐2ff6502dcedfm
dc.identifier.citedreferenceErnstoff AS, Fantke P, Csiszar SA, Henderson AD, Chung S, Jolliet O. 2016. Multi‐pathway exposure modeling of chemicals in cosmetics with application to shampoo. Environ Int 92–93: 87 – 96.
dc.identifier.citedreferenceFantke P, Arnot J, Doucette W. 2016. Improving plant bioaccumulation science through consistent reporting of experimental data. J Environ Manage 181: 374 – 384.
dc.identifier.citedreferenceFantke P, Ernstoff AS, Huang L, Csiszar SA, Jolliet O. 2016. Coupled near‐field and far‐field exposure assessment framework for chemicals in consumer products. Environ Int 94: 508 –18.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.