Show simple item record

A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals

dc.contributor.authorTorres, Anthony D.
dc.contributor.authorKeppel‐aleks, Gretchen
dc.contributor.authorDoney, Scott C.
dc.contributor.authorFendrock, Michaela
dc.contributor.authorLuis, Kelly
dc.contributor.authorDe Mazière, Martine
dc.contributor.authorHase, Frank
dc.contributor.authorPetri, Christof
dc.contributor.authorPollard, David F.
dc.contributor.authorRoehl, Coleen M.
dc.contributor.authorSussmann, Ralf
dc.contributor.authorVelazco, Voltaire A.
dc.contributor.authorWarneke, Thorsten
dc.contributor.authorWunch, Debra
dc.date.accessioned2019-11-12T16:21:49Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-11-12T16:21:49Z
dc.date.issued2019-09-01
dc.identifier.citationTorres, Anthony D.; Keppel‐aleks, Gretchen ; Doney, Scott C.; Fendrock, Michaela; Luis, Kelly; De Mazière, Martine ; Hase, Frank; Petri, Christof; Pollard, David F.; Roehl, Coleen M.; Sussmann, Ralf; Velazco, Voltaire A.; Warneke, Thorsten; Wunch, Debra (2019). "A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals." Journal of Geophysical Research: Atmospheres 124(17-18): 9773-9795.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/151988
dc.description.abstractNational Aeronautics and Space Administration’s Orbiting Carbon Observatory-2 (OCO-2) satellite provides observations of total column-averaged CO2 mole fractions (XCO2) at high spatial resolution that may enable novel constraints on surface-atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO2 observations and reliable representations of atmospheric transport. Since XCO2 observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along-track OCO-2 soundings. We compare high-pass-filtered (<250 km, spatial scales that primarily isolate mesoscale or finer-scale variations) along-track spatial variability in XCO2 and XH2O from OCO-2 tracks to temporal synoptic and mesoscale variability from ground-based XCO2 and XH2O observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along-track, high-frequency variability for OCO-2 XH2O. For XCO2, both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO-2 retrieval state vector are important drivers of the along-track variance budget.Plain Language SummaryNumerous efforts have been made to quantify sources and sinks of atmospheric CO2 at regional spatial scales. A common approach to infer these sources and sinks requires accurate representation of variability of CO2 observations attributed to transport by weather systems. While numerical weather prediction models have a fairly reasonable representation of larger-scale weather systems, such as frontal systems, representation of smaller-scale features (<250 km), is less reliable. In this study, we find that the variability of total column-averaged CO2 observations attributed to these fine-scale weather systems accounts for up to half of the variability attributed to local sources and sinks. Here, we provide a framework for quantifying the drivers of spatial variability of atmospheric trace gases rather than simply relying on numerical weather prediction models. We use this framework to quantify potential sources of errors in measurements of total column-averaged CO2 and water vapor from National Aeronautics and Space Administration’s Orbiting Carbon Observatory-2 satellite.Key PointsWe developed a framework to relate high-frequency spatial variations to transport-induced temporal fluctuations in atmospheric tracersWe use geostatistical analysis to quantify the variance budget for XCO2 and XH2O retrieved from NASA’s OCO-2 satelliteAccounting for random errors, systematic errors, and real geophysical coherence in remotely sensed trace gas observations may yield improved flux constraints
dc.publisherWiley Periodicals, Inc.
dc.publisherUniversity of Wisconsin
dc.subject.otherTCCON
dc.subject.otheratmospheric transport
dc.subject.othergreenhouse gases
dc.subject.otherCO2
dc.subject.othermesoscale
dc.subject.otherOCO-2
dc.titleA Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151988/1/jgrd55658.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151988/2/jgrd55658_am.pdf
dc.identifier.doi10.1029/2018JD029933
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRoss, A. N., Wooster, M. J., Boesch, H., & Parker, R. ( 2013 ). First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes. Geophysical Research Letters, 40, 4098 - 4102. https://doi.org/10.1002/grl.50733
dc.identifier.citedreferenceLandschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., & Wanninkhof, R. ( 2015 ). The reinvigoration of the Southern Ocean carbon sink. Science, 349 ( 6253 ), 1221 - 1224. https://doi.org/10.1126/science.aab2620
dc.identifier.citedreferenceMasarie, K. A., Pétron, G., Andrews, A., Bruhwiler, L., Conway, T. J., Jacobson, A. R., Miller, J. B., Tans, P. P., Worthy, D. E., & Peters, W. ( 2011 ). Impact of CO 2 measurement bias on CarbonTracker surface flux estimates. Journal of Geophysical Research, 116 ( D17 ), D17305. https://doi.org/10.1029/2011JD016270
dc.identifier.citedreferenceMesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., JoviÄ , D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., & Shi, W. ( 2006 ). North American Regional Reanalysis. Bulletin of the American Meteorological Society, 87 ( 3 ), 343 - 360. https://doi.org/10.1175/bams-87-3-343
dc.identifier.citedreferenceMiller, C. E., Crisp, D., DeCola, P. L., Olsen, S. C., Randerson, J. T., Michalak, A. M., Alkhaled, A., Rayner, P., Jacob, D. J., Suntharalingam, P., Jones, D. B. A., Denning, A. S., Nicholls, M. E., Doney, S. C., Pawson, S., Boesch, H., Connor, B. J., Fung, I. Y., O’Brien, D., Salawitch, R. J., Sander, S. P., Sen, B., Tans, P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., & Law, R. M. ( 2007 ). Precision requirements for space-based data. Journal of Geophysical Research, 112, D10314. https://doi.org/10.1029/2006JD007659
dc.identifier.citedreferenceNelson, R. R., Crisp, D., Ott, L. E., & O’Dell, C. W. ( 2016 ). High-accuracy measurements of total column water vapor from the Orbiting Carbon Observatory-2. Geophysical Research Letters, 43, 12,261 - 12,269. https://doi.org/10.1002/2016gl071200
dc.identifier.citedreferenceO’Dell, C. W., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., & Wunch, D. ( 2012 ). The ACOS CO 2 retrieval algorithm-Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 5 ( 1 ), 99 - 121. https://doi.org/10.5194/amt-5-99-2012
dc.identifier.citedreferenceO’Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas R. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Osamu Uchino, Voltaire A. Velazco ( 2018 ). Improved retrievals of carbon dioxide from the Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques Discussions, 11, 1 - 57. https://doi.org/10.5194/amt-2018-257
dc.identifier.citedreferenceOlsen, S. C., & Randerson, J. T. ( 2004 ). Differences between surface and column atmospheric CO 2 and implications for carbon cycle research. Journal of Geophysical Research, 109 ( D2 ), D02301. https://doi.org/10.1029/2003JD003968
dc.identifier.citedreferenceParazoo, N. C., Denning, A. S., Berry, J. A., Wolf, A., Randall, D. A., Kawa, S. R., Pauluis, O., & Doney, S. C. ( 2011 ). Moist synoptic transport of CO 2 along the mid-latitude storm track. Geophysical Research Letters, 38, L09804. https://doi.org/10.1029/2011gl047238
dc.identifier.citedreferenceParazoo, N. C., Denning, A. S., Kawa, S. R., Corbin, K. D., Lokupitiya, R. S., & Baker, I. T. ( 2008 ). Mechanisms for synoptic variations of atmospheric CO 2 in North America, South America and Europe. Atmospheric Chemistry and Physics, 8 ( 23 ), 7239 - 7254. https://doi.org/10.5194/acp-8-7239-2008
dc.identifier.citedreferencePeters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Petron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., & Tans, P. P. ( 2007 ). An atmospheric perspective on North American carbon dioxide exchange: {CarbonTracker}. Proceedings of the National Academy of Sciences, 104 ( 48 ), 18,925 - 18,930. https://doi.org/10.1073/pnas.0708986104
dc.identifier.citedreferencePeters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., Zupanski, D., Bruhwiler, L., & Tans, P. P. ( 2005 ). An ensemble data assimilation system to estimate CO 2 surface fluxes from atmospheric trace gas observations. Journal of Geophysical Research, 110 ( D24 ), D24304. https://doi.org/10.1029/2005jd006157
dc.identifier.citedreferencePeylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., & Zhang, X. ( 2013 ). Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10 ( 10 ), 6699 - 6720. https://doi.org/10.5194/bg-10-6699-2013
dc.identifier.citedreferenceRayner, P. J., & O’Brien, D. M. ( 2001 ). The utility of remotely sensed CO 2 concentration data in surface source inversions. Geophysical Research Letters, 28 ( 1 ), 175 - 178. https://doi.org/10.1029/2000gl011912
dc.identifier.citedreferenceRodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding: Theory and practice. Singapore: World Scientific. https://doi.org/10.1142/9789812813718_0001
dc.identifier.citedreferenceSherlock, V., Connor, B., Robinson, J., Shiona, H., Smale, D., & Pollard, D. ( 2014 ). TCCON data from Lauder, New Zealand, 120HR, Release GGG2014R0. https://doi.org/10.14291/tccon.ggg2014.lauder01.R0/1149293
dc.identifier.citedreferenceStephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Langenfelds, R. L., Steele, L. P., Francey, R. J., & Denning, A. S. ( 2007 ). Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO 2. Science, 316 ( 5832 ), 1732 - 1735. https://doi.org/10.1126/science.1137004
dc.identifier.citedreferenceSussmann, R., & Rettinger, M. ( 2014 ). TCCON data from Garmisch, Germany, Release GGG2014R0. https://doi.org/10.14291/tccon.ggg2014.garmisch01.R0/1149299
dc.identifier.citedreferenceTans, P. P., Fung, I. Y., & Takahashi, T. ( 1990 ). Observational contrains on the global atmospheric CO 2 budget. Science, 247 ( 4949 ), 1431 - 1438. https://doi.org/10.1126/science.247.4949.1431
dc.identifier.citedreferenceTans, P. P., & Keeling, C. D. ( 2017 ). Atmospheric monthly in situ CO 2 data-Mauna Loa Observatory, Hawaii. In Scripps CO 2 Program Data [Data set]. San Diego: UC San Diego Library Digital Collections. https://doi.org/10.6075/j08w3bhw
dc.identifier.citedreferenceWarneke, T., Messerschmidt, J., Notholt, J., Weinzierl, C., Deutscher, N., Petri, C., Grupe, P., Vuillemin, C., Truong, F., Schmidt, M., Ramonet, M., and Parmentier, E. ( 2014 ). TCCON data from Orleans, France, Release GGG2014R0. https://doi.org/10.14291/tccon.ggg2014.orleans01.R0/1149276
dc.identifier.citedreferenceWashenfelder, R. A., Toon, G. C., Blavier, J.-F., Yang, Z., Allen, N. T., Wennberg, P. O., Vay, S. A., Matross, D. M., & Daube, B. C. ( 2006 ). Carbon dioxide column abundances at the Wisconsin Tall Tower site. Journal of Geophysical Research, 111 ( D22 ), D22305. https://doi.org/10.1029/2006jd007154
dc.identifier.citedreferenceWennberg, P. O., Roehl, C., Wunch, D., Toon, G. C., Blavier, J.-F., Washenfelder, R., Keppel-Aleks, G., Allen, N., Ayers, J. ( 2014 ). TCCON data from Park Falls, Wisconsin, USA, Release GGG2014R0. https://doi.org/10.14291/tccon.ggg2014.parkfalls01.R0/1149161
dc.identifier.citedreferenceWennberg, P. O., Wunch, D., Roehl, C., Blavier, J.-F., Toon, G. C., Allen, N., Dowell, P., Teske, K., Martin, C., Martin, J. ( 2014 ). TCCON data from Lamont, Oklahoma, USA, Release GGG2014R0. https://doi.org/10.14291/tccon.ggg2014.lamont01.R0/1149159
dc.identifier.citedreferenceWilliams, I. N., Riley, W. J., Torn, M. S., Biraud, S. C., & Fischer, M. L. ( 2014 ). Biases in regional carbon budgets from covariation of surface fluxes and weather in transport model inversions. Atmospheric Chemistry and Physics, 14 ( 3 ), 1571 - 1585. https://doi.org/10.5194/acp-14-1571-2014
dc.identifier.citedreferenceWofsy, S., Daube, B., Jimenez, R., Kort, E., Pittman, J., Park, S., Commane, R., Xiang, B., Santoni, G., Jacob, D., Fisher, J., Pickett-Heaps, C., Wang, H., Wecht, K., Wang, Q.-Q., Stephens, B. B., Shertz, S., Watt, A.S., Romashkin, P., Campos, T., Haggerty, J., Cooper, W. A., Rogers, D., Beaton, S., Hendershot, R., Elkins, J. W., Fahey, D. W., Gao, R. S., Moore, F., Montzka, S. A., Schwarz, J. P., Perring, A. E., Hurst, D., Miller, B. R., Sweeney, C., Oltmans, S., Nance, D., Hintsa, E., Dutton, G., Watts, L. A., Spackman, J. R., Rosenlof, K. H., Ray, E. A., Hall, B., Zondlo, M. A., Diao, M., Keeling, R., Bent, J., Atlas, E. L., Lueb, R., Mahoney, M. J. ( 2017 ). HIPPO pressure-weighted mean total, 10-km, and 100-m interval column concentrations. Version 1.0 (Data set). UCAR/NCAR - Earth Observing Laboratory. https://doi.org/10.3334/cdiac/hippo_011. Accessed 03 Mar 2018.
dc.identifier.citedreferenceWofsy, S. C. ( 2011 ). HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 ( 1943 ), 2073 - 2086. https://doi.org/10.1098/rsta.2010.0313
dc.identifier.citedreferenceWorden, R. J., Doran, G., Kulawik, S., Eldering, A., Crisp, D., Frankenberg, C., et al. ( 2017 ). Evaluation and attribution of OCO-2 X C O 2 uncertainties. Atmospheric Measurement Techniques, 10 ( 7 ), 2759 - 2771. https://doi.org/10.5194/amt-10-2759-2017
dc.identifier.citedreferenceWunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., & Wennberg, P. O. ( 2011 ). The Total Carbon Column Observing Network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 ( 1943 ), 2087 - 2112. https://doi.org/10.1098/rsta.2010.0240
dc.identifier.citedreferenceWunch, D., Toon, G. C., Sherlock, V., Deutscher, N. M., Liu, C., Feist, D. G., & Wennberg, P. O. ( 2015 ). The Total Carbon Column Observing Network’s GGG2014 Data Version. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.14291/tccon.ggg2014.documentation. R0/1221662
dc.identifier.citedreferenceWunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C., Blavier, J. F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., & Zondlo, M. A. ( 2010 ). Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmospheric Measurement Techniques, 3 ( 5 ), 1351 - 1362. https://doi.org/10.5194/amt-3-1351-2010
dc.identifier.citedreferenceWunch, D., Wennberg, P. O., Osterman, G. B., Fisher, B., Naylor, B., Roehl, C. M., O’Dell, C., Mandrake, L., Viatte, C., Kiel, M., Griffith, D. W. T., Deutscher, N. M., Velazco, V. A., Notholt, J., Warneke, T., Petri, C., De Maziere, M., Sha, M. K., Sussmann, R., Rettinger, M., Pollard, D., Robinson, J., Morino, I., Uchino, O., Hase, F., Blumenstock, T., Feist, D. G., Arnold, S. G., Strong, K., Mendonca, J., Kivi, R., Heikkinen, P., Iraci, L., Podolske, J., Hillyard, P. W., Kawakami, S., Dubey, M. K., Parker, H. A., Sepulveda, E., García, O. E., Te, Y., Jeseck, P., Gunson, M. R., Crisp, D., & Eldering, A. ( 2017 ). Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) X C O 2 measurements with TCCON. Atmospheric Measurement Techniques, 10 ( 6 ), 2209 - 2238. https://doi.org/10.5194/amt-10-2209-2017
dc.identifier.citedreferenceYang, D., Liu, Y., Cai, Z., Chen, X., Yao, L., & Lu, D. ( 2018 ). First global carbon dioxide maps produced from TanSat measurements. Advances in Atmospheric Sciences, 35 ( 6 ), 621 - 623. https://doi.org/10.1007/s00376-018-7312-6
dc.identifier.citedreferenceYokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., & Maksyutov, S. ( 2009 ). Global concentrations of CO 2 and CH 4 retrieved from GOSAT: First preliminary results. Scientific Online Letters on the Atmosphere., 5, 160 - 163. https://doi.org/10.2151/sola.2009-041
dc.identifier.citedreferenceBaker, D. F., Bösch, H., Doney, S. C., O’Brien, D., & Schimel, D. S. ( 2010 ). Carbon source/sink information provided by column CO 2 measurements from the Orbiting Carbon Observatory. Atmospheric Chemistry and Physics, 10 ( 9 ), 4145 - 4165. https://doi.org/10.5194/acp-10-4145-2010
dc.identifier.citedreferenceBaker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S., & Zhu, Z. ( 2006 ). TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO 2 fluxes, 1988-2003. Global Biogeochemical Cycles, 20, GB1002. https://doi.org/10.1029/2004GB002439
dc.identifier.citedreferenceBaldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., & Wofsy, S. ( 2001 ). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82 ( 11 ), 2415 - 2434. https://doi.org/10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2
dc.identifier.citedreferenceBasu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., & Miller, J. B. ( 2018 ). The impact of transport model differences on CO 2; surface flux estimates from OCO-2 retrievals of column average CO 2. Atmospheric Chemistry and Physics, 18 ( 10 ), 7189 - 7215. https://doi.org/10.5194/acp-18-7189-2018
dc.identifier.citedreferenceBolin, B., & Keeling, C. D. ( 1963 ). Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. Journal of Geophysical Research, 68 ( 13 ), 3899 - 3920. https://doi.org/10.1029/jz068i013p03899
dc.identifier.citedreferenceChevallier, F., Ciais, P., Conway, T. J., Aalto, T., Anderson, B. E., Bousquet, P., Brunke, E. G., Ciattaglia, L., Esaki, Y., Fröhlich, M., Gomez, A., Gomez-Pelaez, A. J., Haszpra, L., Krummel, P. B., Langenfelds, R. L., Leuenberger, M., Machida, T., Maignan, F., Matsueda, H., Morguí, J. A., Mukai, H., Nakazawa, T., Peylin, P., Ramonet, M., Rivier, L., Sawa, Y., Schmidt, M., Steele, L. P., Vay, S. A., Vermeulen, A. T., Wofsy, S., & Worthy, D. ( 2010 ). CO 2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. Journal of Geophysical Research, 115 ( D21 ), D21307. https://doi.org/10.1029/2010JD013887
dc.identifier.citedreferenceChevallier, F., & O’Dell, C. W. ( 2013 ). Error statistics of Bayesian CO 2 flux inversion schemes as seen from GOSAT. Geophysical Research Letters, 40, 1252 - 1256. https://doi.org/10.1002/grl.50228
dc.identifier.citedreferenceChevallier, F., Palmer, P. I., Feng, L., Boesch, H., O’Dell, C. W., & Bousquet, P. ( 2014 ). Toward robust and consistent regional CO 2 flux estimates from in situ and spaceborne measurements of atmospheric CO 2. Geophysical Research Letters, 41, 1065 - 1070. https://doi.org/10.1002/2013gl058772
dc.identifier.citedreferenceConnor, B. J., Boesch, H., Toon, G., Sen, B., Miller, C., & Crisp, D. ( 2008 ). Orbiting Carbon Observatory: Inverse method and prospective error analysis. Journal of Geophysical Research, 113, D05305. https://doi.org/10.1029/2006jd008336
dc.identifier.citedreferenceCorbin, K. D., Denning, A. S., Lu, L., Wang, J.-W., & Baker, I. T. ( 2008 ). Possible representation errors in inversions of satellite CO 2 retrievals. Journal of Geophysical Research, 113 ( D2 ), D02301. https://doi.org/10.1029/2007jd008716
dc.identifier.citedreferenceCressie, N., & Hawkins, D. M. ( 1980 ). Robust estimation of the variogram: I. Journal of the International Association for Mathematical Geology, 12 ( 2 ), 115 - 125. https://doi.org/10.1007/BF01035243
dc.identifier.citedreferenceCrisp, D., Atlas, R., Breon, F.-M., Brown, L., Burrows, J., Ciais, P., Connor, B. J., Doney, S. C., Fung, I. Y., Jacob, D. J., Miller, C. E., O’Brien, D., Pawson, S., Randerson, J. T., Rayner, P., Salawitch, R. J., Sander, S. P., Sen, B., Stephens, G. L., Tans, P. P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, B., Pollock, R., Kenyon, D., & Schroll, S. ( 2004 ). The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research, 34 ( 4 ), 700 - 709. https://doi.org/10.1016/j.asr.2003.08.062
dc.identifier.citedreferenceCrowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., Chatterjee, A., Crisp, D., Eldering, A., Jones, D. B., McKain, K., Miller, J., Nassar, R., Oda, T., O&amp;apos;Dell, C., Palmer, P. I., Schimel, D., Stephens, B., & Sweeney, C. ( 2019, in review). The 2015-2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chemistry and Physics Discussions, 1-79, 1 - 79. https://doi.org/10.5194/acp-2019-87
dc.identifier.citedreferenceDai, A., Wang, J., Ware, R. H., & Van Hove, T. ( 2002 ). Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. Journal of Geophysical Research, 107 ( D10 ), 4090. https://doi.org/10.1029/2001JD000642
dc.identifier.citedreferenceDe Mazière, M., Sha, M. K., Desmet, F., Hermans, C., Scolas, F., Kumps, N., Metzger, J.-M., Duflot, V., and Cammas, J.-P. ( 2014 ). TCCON data from Reunion Island (La Reunion), France, Release GGG2014R0. https://doi.org/10.14291/tccon.ggg2014.reunion01.R0/1149288
dc.identifier.citedreferenceDesai, A. ( 2016 ). AmeriFlux US-PFa Park Falls/WLEF [Data set]. AmeriFlux: University of Wisconsin. https://doi.org/10.17190/amf/1246090
dc.identifier.citedreferenceDeutscher, N., Notholt, J., Messerschmidt, J., Weinzierl, C., Warneke, T., Petri, C., Grupe, P., and Katrynski, K. ( 2014 ). TCCON data from Bialystok, Poland, Release GGG2014R1. https://doi.org/10.14291/tccon.ggg2014.bialystok01.R1/1183984
dc.identifier.citedreferenceDeutscher, N. M., Griffith, D. W. T., Bryant, G. W., Wennberg, P. O., Toon, G. C., Washenfelder, R. A., Keppel-Aleks, G., Wunch, D., Yavin, Y., Allen, N. T., Blavier, J. F., Jiménez, R., Daube, B. C., Bright, A. V., Matross, D. M., Wofsy, S. C., & Park, S. ( 2010 ). Total column CO 2 measurements at Darwin, Australia-Site description and calibration against in situ aircraft profiles. Atmospheric Measurement Techniques, 3 ( 4 ), 947 - 958. https://doi.org/10.5194/amt-3-947-2010
dc.identifier.citedreferenceMiller, S. M., Hayek, M. N., Andrews, A. E., Fung, I., & Liu, J. ( 2015 ). Biases in atmospheric CO 2; Estimates from correlated meteorology modeling errors. Atmospheric Chemistry and Physics, 15 ( 5 ), 2903 - 2914. https://doi.org/10.5194/acp-15-2903-2015
dc.identifier.citedreferenceEldering, A., O’Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman, A., Castano, R., Chang, A., Chapsky, L., Cheng, C., Connor, B., Dang, L., Doran, G., Fisher, B., Frankenberg, C., Fu, D., Granat, R., Hobbs, J., Lee, R. A. M., Mandrake, L., McDuffie, J., Miller, C. E., Myers, V., Natraj, V., O’Brien, D., Osterman, G. B., Oyafuso, F., Payne, V. H., Pollock, H. R., Polonsky, I., Roehl, C. M., Rosenberg, R., Schwandner, F., Smyth, M., Tang, V., Taylor, T. E., To, C., Wunch, D., & Yoshimizu, J. ( 2017 ). The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmospheric Measurement Techniques, 10 ( 2 ), 549 - 563. https://doi.org/10.5194/amt-10-549-2017
dc.identifier.citedreferenceEnting, I. G., & Mansbridge, J. V. ( 1989 ). Seasonal sources and sinks of atmospheric CO 2: Direct inversion of filtered data. Tellus Series B: Chemical and Physical Meteorology, 41 ( 2 ), 111 - 126. https://doi.org/10.3402/tellusb.v41i2.15056
dc.identifier.citedreferenceGeels, C., Doney, S. C., Dargaville, R., Brandt, J., & Christensen, J. H. ( 2004 ). Investigating the sources of synoptic variability in atmospheric CO 2 measurements over the Northern Hemisphere continents: A regional model study. Tellus Series B: Chemical and Physical Meteorology, 56 ( 1 ), 35 - 50. https://doi.org/10.3402/tellusb.v56i1.16399
dc.identifier.citedreferenceGlover, D. M., Jenkins, W. J., & Doney, S. C. ( 2011 ). Modeling methods for marine science. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511975721
dc.identifier.citedreferenceGriffith, D. W. T., Deutscher, N., Velazco, V. A., Wennberg, P. O., Yavin, Y., Aleks, G. K., Washenfelder, R., Toon, G. C., Blavier, J.-F., Murphy, C., Jones, N., Kettlewell, G., Connor, B. J., Macatangay, R., Roehl, C., Ryczek, M., Glowacki, J., Culgan, T., and Bryant, G. ( 2014 ). TCCON data from Darwin, Australia, Release GGG2014R0. https://doi.org/10.14291/tccon.ggg2014.darwin01.R0/1149290
dc.identifier.citedreferenceGurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., & Yuen, C. W. ( 2002 ). Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models. Nature, 415 ( 6872 ), 626 - 630. https://doi.org/10.1038/415626a
dc.identifier.citedreferenceHase, F., Blumenstock, T., Dohe, S., Gross, J., & Kiel, M. ( 2014 ). TCCON data from Karlsruhe, Germany, Release GGG2014R1. https://doi.org/10.14291/tccon.ggg2014.karlsruhe01.R1/1182416
dc.identifier.citedreferenceHouweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Chevallier, F., Deng, F., Dlugokencky, E. J., Feng, L., Ganshin, A., Hasekamp, O., Jones, D., Maksyutov, S., Marshall, J., Oda, T., O’Dell, C. W., Oshchepkov, S., Palmer, P. I., Peylin, P., Poussi, Z., Reum, F., Takagi, H., Yoshida, Y., & Zhuravlev, R. ( 2015 ). An intercomparison of inverse models for estimating sources and sinks of CO 2 using GOSAT measurements. Journal of Geophysical Research: Atmospheres, 120, 5253 - 5266. https://doi.org/10.1002/2014JD022962
dc.identifier.citedreferenceKeeling, R. F., Piper, S. C., & Heimann, M. ( 1996 ). Global and hemispheric CO 2 sinks deduced from changes in atmospheric O 2 concentration. Nature, 381 ( 6579 ), 218 - 221. https://doi.org/10.1038/381218a0
dc.identifier.citedreferenceKeppel-Aleks, G., Wennberg, P. O., & Schneider, T. ( 2011 ). Sources of variations in total column carbon dioxide. Atmospheric Chemistry and Physics, 11 ( 8 ), 3581 - 3593. https://doi.org/10.5194/acp-11-3581-2011
dc.identifier.citedreferenceKeppel-Aleks, G., Wennberg, P. O., Washenfelder, R. A., Wunch, D., Schneider, T., Toon, G. C., Andres, R. J., Blavier, J. F., Connor, B., Davis, K. J., Desai, A. R., Messerschmidt, J., Notholt, J., Roehl, C. M., Sherlock, V., Stephens, B. B., Vay, S. A., & Wofsy, S. C. ( 2012 ). The imprint of surface fluxes and transport on variations in total column carbon dioxide. Biogeosciences, 9 ( 3 ), 875 - 891. https://doi.org/10.5194/bg-9-875-2012
dc.identifier.citedreferenceLauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. R., Huang, J., O’Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, P., Sweeney, C., Turnbull, J., & Wu, K. ( 2016 ). High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indian apolis Flux Experiment (INFLUX). Journal of Geophysical Research: Atmospheres, 121, 5213 - 5236. https://doi.org/10.1002/2015JD024473
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.