Show simple item record

Evaluating functional diversity conservation for freshwater fishes resulting from terrestrial protected areas

dc.contributor.authorLamothe, Karl A.
dc.contributor.authorAlofs, Karen M.
dc.contributor.authorChu, Cindy
dc.date.accessioned2019-11-12T16:22:11Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-11-12T16:22:11Z
dc.date.issued2019-11
dc.identifier.citationLamothe, Karl A.; Alofs, Karen M.; Chu, Cindy (2019). "Evaluating functional diversity conservation for freshwater fishes resulting from terrestrial protected areas." Freshwater Biology 64(11): 2057-2070.
dc.identifier.issn0046-5070
dc.identifier.issn1365-2427
dc.identifier.urihttps://hdl.handle.net/2027.42/151997
dc.description.abstractProtected areas are one of the hammers in conservation toolkits, yet few protected areas exist that were designed to protect freshwater ecosystems. This is problematic as freshwater ecosystems are among the most threatened systems on earth. Nonetheless, terrestrial protected areas (TPAs) may afford spill‐over benefits to freshwater ecosystems included within their boundaries, but evaluations of these potential benefits for the protection of freshwater fish diversity are lacking.Using fish community data from 175 lakes inside, outside, or bordering TPAs in Ontario, Canada, we sought to determine if TPAs preserve fish functional diversity. We focused on functional diversity because previous work indicated no taxonomic differences between these lakes, but a difference in normalised‐length size‐spectra slopes inside versus outside TPAs (indicator of unique predator–prey ratios and trophic energy transfer). We expected that communities inside TPAs would show greater functional diversity (i.e. functional dispersion and functional richness) and have more extreme trait combinations (i.e. functional divergence) than communities outside or bordering TPAs. We also tested for differences in the rarity of species‐specific functional traits between fish communities inside, outside, or bordering TPAs, between thermal guilds, and across average body size and overall prevalence of the species.Our results indicated no significant differences in functional diversity among lake fish communities inside, outside, or bordering TPAs. However, fish communities inside TPAs had more extreme trait combinations than outside TPAs because abundant species in lake communities outside TPAs had more ubiquitous trait combinations than abundant fishes inside TPAs.Small‐bodied species showed greater functional rarity than large‐bodied species, indicating that small‐bodied fishes fill functionally unique roles while the most prevalent, large‐bodied species possess a more generalist set of traits.Overall, the similarity of functional diversity metrics for lake fish communities inside, outside, or bordering TPAs in Ontario suggests that TPAs capture the functional diversity of Ontario’s lake fish communities. However, we encourage similar evaluations in regions where environmental conditions and stressors are more distinct across TPA boundaries than they are in Ontario, as these types of evaluations will inform guidelines for the design of freshwater protected areas and monitoring of their effectiveness in the future.
dc.publisherIsland Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherOntario
dc.subject.otherrarity
dc.subject.otherlakes
dc.subject.othercommunity ecology
dc.subject.otherCanada
dc.titleEvaluating functional diversity conservation for freshwater fishes resulting from terrestrial protected areas
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151997/1/fwb13395.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151997/2/fwb13395_am.pdf
dc.identifier.doi10.1111/fwb.13395
dc.identifier.sourceFreshwater Biology
dc.identifier.citedreferencePeres‐Neto, P. R., Jackson, D. A., & Somers, K. M. ( 2005 ). How many principal components? stopping rules for determining the number of non‐trivial axes revisited. Computational Statistics & Data Analysis, 49 ( 4 ), 974 – 997. https://doi.org/10.1016/j.esda.2004.06.015
dc.identifier.citedreferencePimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., … Sexton, J. O. ( 2014 ). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344 ( 6187 ), 1246752. https://doi.org/10.1126/science.1246752
dc.identifier.citedreferencePoesch, M. S., Chavarie, L., Chu, C., Pandit, S. N., & Tonn, W. ( 2016 ). Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries, 41 ( 7 ), 385 – 391. https://doi.org/10.1080/03632415.2016.1180285
dc.identifier.citedreferenceR Core Team ( 2018 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
dc.identifier.citedreferenceReid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., … Cooke, S. J. ( 2019 ). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94, 849 – 873. https://doi.org/10.1111/brv.12480
dc.identifier.citedreferenceRoberts, C. M., Bohnsack, J. A., Gell, F., Hawkins, J. P., & Goodridge, R. ( 2001 ). Effects of marine reserves on adjacent fisheries. Science, 294, 1920 – 1923. https://doi.org/10.1126/science.294.5548.1920
dc.identifier.citedreferenceRose, N. L., Yang, H., Turner, S. D., & Simpson, G. L. ( 2012 ). An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochemica et Cosmochimica Acta, 82, 113 – 135. https://doi.org/10.1016/j.gca.2010.12.026
dc.identifier.citedreferenceSagouis, A., Jabot, F., & Argillier, C. ( 2016 ). Taxonomic versus functional diversity metrics: How do fish communities respond to anthropogenic stressors in reservoirs? Ecology of Freshwater Fish, 26 ( 4 ), 621 – 635. https://doi.org/10.1111/eff.12306
dc.identifier.citedreferenceSandstrom, S., Rawson, M., & Lester, N. ( 2011 ). Manual of instructions for broad‐scale fish community monitoring; using North American (NA1) and Ontario small mesh (ON2) gillnets. Version 2011.1 (p. 30 ). Peterborough, ON, Canada: Ontario Ministry of Natural Resources. appendices.
dc.identifier.citedreferenceSaunders, D. L., Meeuwig, J. J., & Vincent, A. C. J. ( 2002 ). Freshwater protected areas: Strategies for conservation. Conservation Biology, 16 ( 1 ), 30 – 41. https://doi.org/10.1046/j.1523-1739.2002.99562.x
dc.identifier.citedreferenceSchindler, D. W. ( 2001 ). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences, 58 ( 1 ), 18 – 29. https://doi.org/10.1139/f00-179
dc.identifier.citedreferenceSmith, V. H., Tilman, G. D., & Nekola, J. C. ( 1999 ). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100 ( 1–3 ), 179 – 196. https://doi.org/10.1016/s0269-7491(99)00091-3
dc.identifier.citedreferenceStrecker, A. L., Olden, J. D., Whittier, J. B., & Paukert, C. P. ( 2011 ). Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecological Applications, 21 ( 8 ), 3002 – 3013. https://doi.org/10.1890/11-0599.1
dc.identifier.citedreferenceTan, M., & Armbruster, J. W. ( 2018 ). Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa, 4476 ( 1 ), 006 – 039. https://doi.org/10.11646/zootaxa.4476.1.4
dc.identifier.citedreferenceTedesco, P. A., Beauchard, O., Bigorne, R., Blanchet, S., Buisson, L., Conti, L., … Oberdorff, T. ( 2017 ). A global database on freshwater fish species occurrence in drainage basins. Scientific Data, 4, 170141. https://doi.org/10.1038/sdata.2017.141
dc.identifier.citedreferenceToussaint, A., Charpin, N., Beachard, O., Grenouillet, G., Oberforff, T., Tedesco, P. A., … Villéger, S. ( 2018 ). Non‐native species led to marked shifts in functional diversity of the world freshwater fish faunas. Ecology Letters, 21 ( 11 ), 1649 – 1659. https://doi.org/10.1111/ele.13141
dc.identifier.citedreferenceVilléger, S., Mason, N. W. H., & Mouillot, D. ( 2008 ). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89 ( 8 ), 2290 – 2301. https://doi.org/10.1890/07-1206.1
dc.identifier.citedreferenceViolle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., … Mouillot, D. ( 2017 ). Functional rarity: The ecology of outliers. Trends in Ecology & Evolution, 32 ( 5 ), 356 – 367. https://doi.org/10.1016/j.tree.2017.02.002
dc.identifier.citedreferenceWickham, H. ( 2009 ). ggplot2: Elegant graphics for data analysis. New York, NY: Springer‐Verlag.
dc.identifier.citedreferenceWilkinson, C. L., Yeo, D. C., Tan, H. H., Fikri, A. H., & Ewers, R. M. ( 2018 ). Land‐use change is associated with a significant loss of freshwater fish species and functional richness in Sabah, Malaysia. Biological Conservation, 222, 164 – 171. https://doi.org/10.1016/j.biocon.2018.04.004
dc.identifier.citedreferenceWinemiller, K. O., Fitzgerald, D. B., Bower, L. M., & Pianka, E. R. ( 2015 ). Functional traits, convergent evolution, and period tables of niches. Ecology Letters, 18 ( 8 ), 737 – 751. https://doi.org/10.1111/ele.12462
dc.identifier.citedreferenceWood, S. N. ( 2004 ). Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99 ( 467 ), 673 – 686. https://doi.org/10.1198/016214504000000980
dc.identifier.citedreferenceWood, S. N. ( 2006 ). Generalized additive models: An introduction with R. Boca Raton, FL: CRC Press, Chapman & Hall.
dc.identifier.citedreferenceWorld Bank Group ( 2019 ). Terrestrial protected areas (% of total land area). Retrieved from https://data.worldbank.org/indicator/ER.LND.PTLD.ZS. Accessed: 01 28 19.
dc.identifier.citedreferenceAbell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., … Petry, P. ( 2008 ). Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58 ( 5 ), 403 – 414. https://doi.org/10.1641/b580507
dc.identifier.citedreferenceAlofs, K. M., Jackson, D. A., & Lester, N. P. ( 2014 ). Ontario freshwater fishes demonstrate differing range‐boundary shifts in a warming climate. Diversity & Distributions, 20 ( 2 ), 123 – 136. https://doi.org/10.1111/ddi.12130
dc.identifier.citedreferenceAnderson, M. J. ( 2006 ). Distance‐based tests for homogeneity of multivariate dispersion. Biometrics, 62 ( 1 ), 245 – 253. https://doi.org/10.1111/j.1541-0420.2005.00440.x
dc.identifier.citedreferenceArthington, A. H., Dulvy, N. K., Gladstone, W., & Winfield, I. J. ( 2016 ). Fish conservation in freshwater and marine realms: Status, threats and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 26 ( 5 ), 838 – 857. https://doi.org/10.1002/aqc.2712
dc.identifier.citedreferenceAylward, B., Bandyopadhyay, J., Belausteguigotia, J. C., Börkey, P., Cassar, A., Meadors, L., … Voutchkov, N. ( 2005 ). Freshwater ecosystem services. In R. Rijsberman, R. Costanza & P. Jacobi (review Eds.), Ecosystems and human well‐being: Current state and trends, Volume 1. Millennium ecosystem assessment (pp. 213 – 255 ). Washington, DC: Island Press.
dc.identifier.citedreferenceBritton, A. W., Day, J. J., Doble, C. J., Ngatunga, B. P., Kemp, K. M., Carbone, C., & Murrell, D. J. ( 2017 ). Terrestrial‐focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika. Biological Conservation, 212, 120 – 129. https://doi.org/10.1016/j.biocon.2017.06.001
dc.identifier.citedreferenceBruner, A. G., Gullison, R. E., Rice, R. E., & de Fonseca, G. A. B. ( 2001 ). Effectiveness of parks in protecting tropical biodiversity. Science, 291 ( 5501 ), 125 – 128. https://doi.org/10.1126/science.291.5501.125
dc.identifier.citedreferenceBuisson, L., Grenouillet, G., Villéger, S., Canal, J., & Laffaile, P. ( 2013 ). Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology, 19 ( 2 ), 387 – 400. https://doi.org/10.1111/gcb.12056
dc.identifier.citedreferenceBurkhead, N. M. ( 2012 ). Extinction rates in North American freshwater fishes, 1900‐2010. BioScience, 62 ( 9 ), 798 – 808. https://doi.org/10.1525/bio.2012.62.9.5
dc.identifier.citedreferenceCadotte, M. W., Carscadden, K., & Mirotchnick, N. ( 2011 ). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079 – 1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x
dc.identifier.citedreferenceCardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., … Naeem, S. ( 2012 ). Biodiversity loss and its impact on humanity. Nature, 486, 59 – 67. https://doi.org/10.1038/nature11148
dc.identifier.citedreferenceCarpenter, S. R., Stanley, E. H., & Vander Zanden, M. J. ( 2011 ). State of the world’s freshwater ecosystems: Physical, chemical, and biological changes. Annual Review of Environment and Resources, 36, 75 – 99. https://doi.org/10.1146/annurev-environ-021810-094524
dc.identifier.citedreferenceChu, C., Ellis, L., & de Kerckhove, D. T. ( 2018 ). The effectiveness of terrestrial protected areas for lake fish community conservation. Conservation Biology, 32 ( 3 ), 607 – 618. https://doi.org/10.1111/cobi.13034
dc.identifier.citedreferenceChu, C., Lester, N. P., Giacomini, H. C., Shuter, B. J., & Jackson, D. A. ( 2016 ). Catch‐per‐unit‐effort and size spectra of lake fish assemblages reflect underlying patterns in ecological conditions and anthropogenic activities across regional and local scales. Canadian Journal of Fisheries and Aquatic Sciences, 73 ( 4 ), 535 – 546. https://doi.org/10.1139/cjfas-2015-0150
dc.identifier.citedreferenceChu, C., Mandrak, N. E., & Minns, C. K. ( 2005 ). Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity & Distributions, 11 ( 4 ), 299 – 310. https://doi.org/10.1111/j.1366-9516.2005.00153.x
dc.identifier.citedreferenceChu, C., Minns, C. K., Lester, N. P., & Mandrak, N. E. ( 2015 ). An updated assessment of human activities, the environment, and freshwater fish biodiversity in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 72 ( 1 ), 135 – 148. https://doi.org/10.1139/cjfas-2013-0609
dc.identifier.citedreferenceCoker, G. A., Portt, C. B., & Minns, C. K. ( 2001 ). Morphological and ecological characteristics of Canadian freshwater fishes. Canada Manuscript Report of Fisheries and Aquatic Sciences No. 2554, iv +89.
dc.identifier.citedreferenceCollen, B., Whitton, F., Dyer, E. E., Baillie, J. E. M., Cumberlidge, N., Darwall, W. R. T., … Böhm, M. ( 2014 ). Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography, 23 ( 1 ), 40 – 51. https://doi.org/10.1111/geb.12096
dc.identifier.citedreferenceDextrase, A. J., & Mandrak, N. E. ( 2006 ). Impacts of alien invasive species on freshwater fauna at risk in Canada. Biological Invasions, 8 ( 1 ), 13 – 24. https://doi.org/10.1007/s10530-005-0232-2
dc.identifier.citedreferenceDudgeon, D. ( 2014 ). Threats to freshwater biodiversity in a changing world. Handbook of global environmental pollution (Vol. 1 ). New York, NY: Springer.
dc.identifier.citedreferenceDudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., … Sullivan, C. A. ( 2006 ). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81 ( 2 ), 163 – 182. https://doi.org/10.1017/s1464793105006950
dc.identifier.citedreferenceDudley, N. (Ed.) ( 2008 ). Guidelines for applying protected area management categories (p. 86 ). Gland, Switzerland: IUCN. With: Stolton, S., Shadie P., & Dudley, N. (2013). IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types, Best Practice Protected Area Guidelines Series No. 21, Gland, Switzerland: IUCN.
dc.identifier.citedreferenceDugan, H. A., Bartlett, S. L., Burke, S. M., Doubek, J. P., Krivak‐Tetley, F. E., Skaff, N. K., … Weathers, K. C. ( 2017 ). Salting our freshwater lakes. PNAS, 114 ( 17 ), 4453 – 4458. https://doi.org/10.1073/pnas.1620211114
dc.identifier.citedreferenceEakins, R. J. ( 2017 ). Ontario freshwater fishes life history database. (Version 4.74). Online database. Retrieved from http://www.ontariofishes.ca
dc.identifier.citedreferenceEerkes‐Medrano, D., Thompson, R. C., & Aldridge, D. C. ( 2015 ). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63 – 82. https://doi.org/10.1016/j.watres.2015.02.012
dc.identifier.citedreferenceEnvironment and Climate Change Canada ( 2017a ). Water and the environment: Frequently asked questions. Retrieved from www.canada.ca/en/environment-climate-change/services/water-overview/frequently-asked-questions.html. Accessed 03 29 2018.
dc.identifier.citedreferenceEnvironment and Climate Change Canada ( 2017b ). Canadian environmental sustainability indicators: Canada’s protected areas. Consulted on Month day, year. Retrieved from www.ec.gc.ca/indicateurs-indicators/default.asp?xml:lang=en&n=478A1D3D-1. Accessed 02 05 2018.
dc.identifier.citedreferenceFrimpong, E. A., & Angermeier, P. L. ( 2009 ). FishTraits: A database of ecological and life‐history traits of freshwater fishes of the United States. Fisheries, 34 ( 10 ), 487 – 495. https://doi.org/10.1577/1548-8446-34.10.487
dc.identifier.citedreferenceGivan, O., Parravicini, V., Kulbicki, M., & Belmaker, J. ( 2017 ). Trait structure reveals the processes underlying fish establishment in the Mediterranean. Global Ecology and Biogeography, 26 ( 2 ), 142 – 153. https://doi.org/10.1111/geb.12523
dc.identifier.citedreferenceGovernment of Canada. ( 1985a ). Canada water act. R.S.C., 1985, c. C‐11. Available from https://laws-lois.justice.gc.ca/PDF/C-11.pdf
dc.identifier.citedreferenceGovernment of Canada. ( 1985b ). Fisheries act. R.S.C., 1985, c. F‐14. Available from https://laws-lois.justice.gc.ca/PDF/F-14.pdf
dc.identifier.citedreferenceGovernment of Canada. ( 2002 ). Canada species at risk act. S.C. 2002, c, 29. Available from https://laws-lois.justice.gc.ca/PDF/S-15.3.pdf
dc.identifier.citedreferenceGray, C. L., Hill, S. L. L., Newbold, T., Hudson, L. N., Börger, L., Contu, S., … Scharlemann, J. P. W. ( 2016 ). Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 7, 12306. https://doi.org/10.1038/ncomms12306
dc.identifier.citedreferenceGrenié, M., Denelle, P., Tucker, C., Munoz, F., & Violle, C. ( 2017 ). funrar: An R package to characterize functional rarity. Diversity & Distributions, 23 ( 12 ), 1365 – 1371. https://doi.org/10.1111/ddi.12629
dc.identifier.citedreferenceHansen, G. J. A., Read, J. S., Hansen, J. F., & Winslow, L. A. ( 2017 ). Projected shifts in fish species dominance in Wisconsin lakes under climate change. Global Change Biology, 23 ( 4 ), 1463 – 1476. https://doi.org/10.1111/gcb.13462
dc.identifier.citedreferenceHarrison, I. J., Green, P. A., Farrell, T. A., Juffe‐Bignoli, D., Sáenz, L., & Vörösmarty, C. J. ( 2016 ). Protected areas and freshwater provisioning: A global assessment of freshwater provision, threats and management strategies to support human water security. Aquatic Conservation: Marine and Freshwater Ecosystems, 26 ( S1 ), 103 – 120. https://doi.org/10.1002/aqc.2652
dc.identifier.citedreferenceHolm, E., Mandrak, N., & Burridge, M. ( 2009 ). The ROM field guide to freshwater fishes of Ontario. Toronto, ON: Royal Ontario Museum.
dc.identifier.citedreferenceHubálek, Z. ( 1982 ). Coefficients of association and similarity, based on binary (presence‐absence) data: An evaluation. Biological Reviews, 57 ( 4 ), 669 – 689. https://doi.org/10.1111/j.1469-185x.1982.tb00376.x
dc.identifier.citedreferenceIUCN, UNEP‐WCMC [International Union for Conservation of Nature – United Nations Environment World Conservation Monitoring Centre]. ( 2016 ). The world database on protected areas (WDPA). Cambridge, UK: UNEP World Conservation Monitoring Centre. Retrieved from www.protectedplanet.net [accessed January 2016].
dc.identifier.citedreferenceJackson, M. C., Loewen, C. J., Vinebrooke, R. D., & Chimimba, C. T. ( 2016 ). Net effects of multiple stressors in freshwater ecosystems: A meta‐analysis. Global Change Biology, 22 ( 1 ), 180 – 189. https://doi.org/10.1111/gcb.13028
dc.identifier.citedreferenceLaliberté, E., & Legendre, P. ( 2010 ). A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 91 ( 1 ), 299 – 305. https://doi.org/10.1890/08-2244.1
dc.identifier.citedreferenceLaliberté, E., Legendre, P., & Shipley, B. ( 2014 ). FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0‐12. Retrieved from https://cran.r-project.org/web/packages/FD/index.html
dc.identifier.citedreferenceLaliberté, E., Wells, J. A., DeClerck, F., Metcalfe, D. J., Catterall, C. P., Queiroz, C., … Mayfield, M. M. ( 2010 ). Land‐use intensification reduces plan functional redundancy and response diversity in plant communities. Ecology Letters, 13 ( 1 ), 76 – 86. https://doi.org/10.1111/j.1461-0248.2009.01403.x
dc.identifier.citedreferenceLamothe, K. A., Alofs, K. M., Jackson, D. A., & Somers, K. M. ( 2018 ). Functional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients. Diversity & Distributions, 24 ( 11 ), 1612 – 1626. https://doi.org/10.1111/ddi.12812
dc.identifier.citedreferenceLamothe, K. A., Drake, D. A. R., Pitcher, T. E., Broome, J. E., Dextrase, A. J., Gillespie, A., … Vachon, N. (In press). Reintroduction of fishes in Canada: A review of research progress for SARA‐listed fishes. Environmental Reviews. https://doi.org/10.1139/er-2019-0010
dc.identifier.citedreferenceLamothe, K. A., Jackson, D. A., & Somers, K. M. ( 2018 ). Long‐term directional trajectories among lake crustacean zooplankton communities and water chemistry. Canadian Journal of Fisheries and Aquatic Sciences, 75 ( 11 ), 1926 – 1939. https://doi.org/10.1139/cjfas-2017-0518
dc.identifier.citedreferenceLegendre, P., & Gallagher, E. ( 2001 ). Ecologically meaningful transformations for ordination of species data. Oecologia, 129 ( 2 ), 271 – 280. https://doi.org/10.1007/s004420100716
dc.identifier.citedreferenceLester, N. P., Marshall, T. R., Armstrong, K., Dunlop, W. I., & Ritchie, B. ( 2003 ). A broad‐scale approach to management of Ontario’s recreational fisheries. North American Journal of Fisheries Management, 23 ( 4 ), 1312 – 1328. https://doi.org/10.1577/m01-230am
dc.identifier.citedreferenceMacArthur, R., & Levins, R. ( 1967 ). The limiting similarly, convergence, and divergence of coexisting species. The American Naturalist, 101 ( 921 ), 377 – 385. https://doi.org/10.1086/282505
dc.identifier.citedreferenceMandrak, N. E. ( 1995 ). Biogeographic patterns of fish species richness in Ontario lakes in relation to historical and environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 52 ( 7 ), 1462 – 1474. https://doi.org/10.1139/f95-141
dc.identifier.citedreferenceMason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. ( 2005 ). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111 ( 1 ), 112 – 118. https://doi.org/10.1111/j.0030-1299.2005.13886.x
dc.identifier.citedreferenceMason, N. W. H., Richardson, S. J., Peltzer, D. A., Wardle, D. A., de Bello, F., & Allen, R. B. ( 2012 ). Changes in co‐existence mechanisms along a long‐term soil chronosequence revealed by functional trait diversity. Journal of Ecology, 100 ( 3 ), 678 – 689. https://doi.org/10.1111/j.1365-2745.2012.01965.x
dc.identifier.citedreferenceMicheli, F., & Halpern, B. S. ( 2005 ). Low functional redundancy in coastal marine assemblages. Ecology Letters, 8 ( 4 ), 391 – 400. https://doi.org/10.1111/j.1461-0248.2005.00731.x
dc.identifier.citedreferenceMinns, C. K. ( 1995 ). Allometry of home range size in lake and river fishes. Canadian Journal of Fisheries and Aquatic Sciences, 52 ( 7 ), 1499 – 1508. https://doi.org/10.1139/f95-144
dc.identifier.citedreferenceMouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. ( 2010 ). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24 ( 4 ), 867 – 876. https://doi.org/10.1111/j.1365-2435.2010.01695.x
dc.identifier.citedreferenceMouillot, D., Culioli, J. M., Pelletier, D., & Tomasini, J. A. ( 2008 ). Do we protect biological originality in protected areas? A new index and an application to the Bonifacio Strait Natural Reserve. Biological Conservation, 141, 1569 – 1580. https://doi.org/10.1016/j.biocon.2008.04.002
dc.identifier.citedreferenceMouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. ( 2013 ). A functional approach reveals community responses to disturbance. Trends in Ecology & Evolution, 28 ( 3 ), 167 – 177. https://doi.org/10.1016/j.tree.2012.10.004
dc.identifier.citedreferenceMouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias‐González, J. E., Bender, M., … Bellwood, D. R. ( 2014 ). Functional over‐redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS, 111 ( 38 ), 13757 – 13762. https://doi.org/10.1073/pnas.1317625111
dc.identifier.citedreferenceMouillot, D., Villéger, S., Scherer‐Lorenzen, M., & Mason, N. W. H. ( 2011 ). Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE, 6 ( 3 ), e17476. https://doi.org/10.1371/journal.pone.0017476
dc.identifier.citedreferenceMyers, B. J. E., Lynch, A. J., Bunnell, D. B., Chu, C., Falke, J. A., Kovach, R. P., … Paukert, C. P. ( 2017 ). Global synthesis of the projected and documented effects of climate change on inland fishes. Reviews in Fish Biology and Fisheries, 27 ( 2 ), 339 – 361. https://doi.org/10.1007/s11160-017-9476-z
dc.identifier.citedreferenceNõges, P., Argillier, C., Borja, Á., Garmendia, J. M., Hanganu, J., Vit, K., … Birk, S. ( 2016 ). Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Science of the Total Environment, 540, 43 – 52. https://doi.org/10.1016/j.scitotenv.2015.06.045
dc.identifier.citedreferenceOchiai, A. ( 1957 ). Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions. Bulletin of the Japanese Society of Scientific Fisheries (Nippon Suisan Gakkaishi), 22 ( 9 ), 526 – 530. https://doi.org/10.2331/suisan.22.522
dc.identifier.citedreferenceOksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. ( 2018 ). vegan: Community ecology package. R package version 2.5‐2. Retrieved from https://cran.r-project.org/web/packages/vegan/index.html
dc.identifier.citedreferenceOMNR [Ontario Ministry of Natural Resources] ( 2011 ). State of Ontario’s protected areas report. Peterborough, ON, Canada: Ontario Ministry of Natural Resources.
dc.identifier.citedreferenceOMNRF [Ontario Ministry of Natural Resources and Forestry]. ( 2015 ). Ontario’s provincial fish strategy. Peterborough, ON, Canada: Fisheries Policy Section, Species Conservation Policy Branch, Ontario Ministry of Natural Resources and Forestry.
dc.identifier.citedreferencePeres‐Neto, P. R., Jackson, D. A., & Somers, K. M. ( 2003 ). Giving meaningful interpretation to ordination axes: Assessing loading significance in principal component analysis. Ecology, 84 ( 9 ), 2347 – 2363. https://doi.org/10.1890/00-0634
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.