Show simple item record

Lessons from a Minimal Genome: What Are the Essential Organizing Principles of a Cell Built from Scratch?

dc.contributor.authorTarnopol, Rebecca L.
dc.contributor.authorBowden, Sierra
dc.contributor.authorHinkle, Kevin
dc.contributor.authorBalakrishnan, Krithika
dc.contributor.authorNishii, Akira
dc.contributor.authorKaczmarek, Caleb J.
dc.contributor.authorPawloski, Tara
dc.contributor.authorVecchiarelli, Anthony G.
dc.date.accessioned2019-11-12T16:22:40Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-11-12T16:22:40Z
dc.date.issued2019-10-15
dc.identifier.citationTarnopol, Rebecca L.; Bowden, Sierra; Hinkle, Kevin; Balakrishnan, Krithika; Nishii, Akira; Kaczmarek, Caleb J.; Pawloski, Tara; Vecchiarelli, Anthony G. (2019). "Lessons from a Minimal Genome: What Are the Essential Organizing Principles of a Cell Built from Scratch?." ChemBioChem 20(20): 2535-2545.
dc.identifier.issn1439-4227
dc.identifier.issn1439-7633
dc.identifier.urihttps://hdl.handle.net/2027.42/152011
dc.description.abstractOne of the primary challenges facing synthetic biology is reconstituting a living system from its component parts. A particularly difficult landmark is reconstituting a self‐organizing system that can undergo autonomous chromosome compaction, segregation, and cell division. Here, we discuss how the syn3.0 minimal genome can inform us of the core self‐organizing principles of a living cell and how these self‐organizing processes can be built from the bottom up. The review underscores the importance of fundamental biology in rebuilding life from its molecular constituents.A primary challenge in synthetic biology is reconstituting self‐organizing systems that can undergo autonomous chromosome compaction, segregation, and cell division. Here, we discuss how the syn3.0 minimal genome sheds light on the core self‐organizing principles of living cells and how these self‐organizing processes can be built from the bottom up.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbottom-up biology
dc.subject.otherself-organization
dc.subject.othersynthetic biology
dc.subject.othersynthetic cell
dc.subject.otherminimal genome
dc.titleLessons from a Minimal Genome: What Are the Essential Organizing Principles of a Cell Built from Scratch?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152011/1/cbic201900249.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152011/2/cbic201900249_am.pdf
dc.identifier.doi10.1002/cbic.201900249
dc.identifier.sourceChemBioChem
dc.identifier.citedreferenceR. Mercier, P. Domínguez-Cuevas, J. Errington, Cell Rep. 2012, 1, 417 – 423.
dc.identifier.citedreferenceR. W. Gilpin, S. S. Nagy, J. Bacteriol. 1976, 127, 1018 – 1021.
dc.identifier.citedreferenceR. Mercier, Y. Kawai, J. Errington, Cell 2013, 152, 997 – 1007.
dc.identifier.citedreferenceT. Komano, R. Utsumi, M. Kawamukai, Res. Microbiol. 1991, 142, 269 – 277.
dc.identifier.citedreferenceR. Duman, S. Ishikawa, I. Celik, H. Strahl, N. Ogasawara, P. Troc, J. Löwe, L. W. Hamoen, Proc. Natl. Acad. Sci. USA 2013, 110, E 4601 –E 4610.
dc.identifier.citedreferenceS. Pichoff, J. Lutkenhaus, Mol. Microbiol. 2005, 55, 1722 – 1734.
dc.identifier.citedreferenceR. Lenarcic, S. Halbedel, L. Visser, M. Shaw, L. J. Wu, J. Errington, D. Marenduzzo, L. W. Hamoen, EMBO J. 2009, 28, 2272 – 2282.
dc.identifier.citedreferenceK. S. Ramamurthi, R. Losick, Proc. Natl. Acad. Sci. USA 2009, 106, 13541 – 13545.
dc.identifier.citedreferenceH. Strahl, L. W. Hamoen, Curr. Opin. Microbiol. 2012, 15, 731 – 736.
dc.identifier.citedreferenceM. Lluch-Senar, E. Querol, J. Piñol, Mol. Microbiol. 2010, 78, 278 – 289.
dc.identifier.citedreferenceS. A. Proctor, N. Minc, A. Boudaoud, Curr. Biol. 2012, 22, 1601 – 1608.
dc.identifier.citedreferenceS. Dmitrieff, F. Nédélec, J. Cell Biol. 2016, 212, 763 – 766.
dc.identifier.citedreferenceM. Miyazaki, M. Chiba, H. Eguchi, T. Ohki, S. Ishiwata, Nat. Cell Biol. 2015, 17, 480 – 489.
dc.identifier.citedreferenceS. K. Vogel, F. Heinemann, G. Chwastek, P. Schwille, Cytoskeleton 2013, 70, 706 – 717.
dc.identifier.citedreferenceS. Tanaka, K. Takiguchi, M. Hayashi, Commun. Phys. 2018, 1, 1 – 10.
dc.identifier.citedreferenceL. Christ, C. Raiborg, E. M. Wenzel, C. Campsteijn, H. Stenmark, Trends Biochem. Sci. 2017, 42, 42 – 56.
dc.identifier.citedreferenceT. Obita, S. Saksena, S. Ghazi-Tabatabai, D. J. Gill, O. Perisic, S. D. Emr, R. L. Williams, Nature 2007, 449, 735 – 739.
dc.identifier.citedreferenceC. F. V. Hobel, S. V. Albers, A. J. M. Driessen, A. N. Lupas, Biochem. Soc. Trans. 2008, 36, 94 – 98.
dc.identifier.citedreferenceY. Caspi, C. Dekker, Front. Microbiol. 2018, 9, 174.
dc.identifier.citedreferenceN. Monroe, H. Han, M. D. Gonciarz, D. M. Eckert, M. A. Karren, F. G. Whitby, W. I. Sundquist, C. P. Hill, J. Mol. Biol. 2014, 426, 510 – 525.
dc.identifier.citedreferenceR. Y. Samson, T. Obita, B. Hodgson, M. K. Shaw, P. L. Chong, R. L. Williams, S. D. Bell, Mol. Cell 2011, 41, 186 – 196.
dc.identifier.citedreferenceJ. Liu, R. Gao, C. Li, J. Ni, Z. Yang, Q. Zhang, H. Chen, Y. Shen, Mol. Microbiol. 2017, 105, 540 – 553.
dc.identifier.citedreferenceR. Y. Samson, T. Obita, S. M. Freund, R. L. Williams, S. D. Bell, Science 2008, 322, 1710 – 1713.
dc.identifier.citedreferenceN. Yang, A. J. M. Driessen, Extremophiles 2014, 18, 331 – 339.
dc.identifier.citedreferenceM. J. Dobro, R. Y. Samson, Z. Yu, J. McCullough, H. J. Ding, P. L.-G. Chong, S. D. Bell, G. J. Jensen, Mol. Biol. Cell 2013, 24, 2319 – 2327.
dc.identifier.citedreferenceW. K. Spoelstra, S. Deshpande, C. Dekker, Curr. Opin. Biotechnol. 2018, 51, 47 – 56.
dc.identifier.citedreferenceY. Caspi, C. Dekker, Syst. Synth. Biol. 2014, 8, 249 – 269.
dc.identifier.citedreferenceS. Deshpande, Y. Caspi, A. E. C. Meijering, C. Dekker, Nat. Commun. 2016, 7, 10447.
dc.identifier.citedreferenceS. Deshpande, W. K. Spoelstra, M. van Doorn, J. Kerssemakers, ACS Nano 2018, 12, 2560 – 2568.
dc.identifier.citedreferenceR. Gil, J. Peretó, Front. Ecol. Evol. 2015, 3, 123.
dc.identifier.citedreferenceT. J. Erb, P. R. Jones, A. Bar-Even, Curr. Opin. Chem. Biol. 2017, 37, 56 – 62.
dc.identifier.citedreferenceM. Breuer, T. M. Earnest, C. Merryman, K. S. Wise, L. Sun, M. R. Lynott, C. A. Hutchison, H. O. Smith, J. D. Lapek, D. J. Gonzalez, et al., eLife 2019, 8, 36842.
dc.identifier.citedreferenceP. van Nies, I. Westerlaken, D. Blanken, M. Salas, M. Mencía, C. Danelon, Nat. Commun. 2018, 9, 1583.
dc.identifier.citedreferenceH. Jia, M. Heymann, F. Bernhard, P. Schwille, L. Kai, Nat. Biotechnol. 2017, 39, 199 – 205.
dc.identifier.citedreferenceK. Yue, Y. Zhu, L. Kai, Cells 2019, 8, 315.
dc.identifier.citedreferenceM. Juhas, D. R. Reuss, B. Zhu, F. M. Commichau, Microbiology 2014, 160, 2341 – 2351.
dc.identifier.citedreferenceC. A. Hutchison   III, R.-Y. Chuang, V. N. Noskov, N. Assad-Garcia, T. J. Deerinck, M. H. Ellisman, J. Gill, K. Kannan, B. J. Karas, L. Ma, et al., Science 2016, 351, aad 6253.
dc.identifier.citedreferenceM. Juhas, L. Eberl, J. I. Glass, Trends Cell Biol. 2011, 21, 562 – 568.
dc.identifier.citedreferenceA. R. Mushegian, E. V. Koonin, Proc. Natl. Acad. Sci. USA 1996, 93, 10268 – 10273.
dc.identifier.citedreferenceE. V. Koonin, Nat. Rev. Microbiol. 2003, 1, 127 – 136.
dc.identifier.citedreferenceJ. Rees, O. Chalkley, S. Landon, O. Purcell, L. Marucci, C. Grierson, bioRxiv 2019, https://doi.org/10.1101/344564.
dc.identifier.citedreferenceB. Gibson, D. J. Wilson, E. Feil, A. Eyre-Walker, Proc. R. Soc. London Ser. B 2018, 285, 2018.0789.
dc.identifier.citedreferenceJ. P. McCutcheon, N. A. Moran, Nat. Rev. Microbiol. 2012, 10, 13 – 26.
dc.identifier.citedreferenceH. Salem, E. Bauer, R. Kirsch, A. Berasategui, M. Cripps, B. Weiss, R. Koga, K. Fukumori, H. Vogel, T. Fukatsu, M. Kaltenpoth, Cell 2017, 171, 1520 – 1531.
dc.identifier.citedreferenceD. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R. Chuang, M. A. Algire, G. A. Benders, M. G. Montague, L. Ma, M. M. Moodie, et al., Science 2010, 329, 52 – 57.
dc.identifier.citedreferenceM. Antczak, M. Michaelis, M. Wass, bioRxiv 2018, https://doi.org/10.1101/381657.
dc.identifier.citedreferenceS. Jun, Biophys. J. 2015, 108, 785.
dc.identifier.citedreferenceI. V. Surovtsev, C. Jacobs-Wagner, Cell 2018, 172, 1271 – 1293.
dc.identifier.citedreferenceS. Cunha, C. L. Woldringh, T. Odijk, J. Struct. Biol. 2001, 136, 53 – 66.
dc.identifier.citedreferenceL. D. Murphy, S. B. Zimmerman, J. Struct. Biol. 1997, 119, 336 – 346.
dc.identifier.citedreferenceT. Odijk, Biophys. Chem. 1998, 73, 23 – 29.
dc.identifier.citedreferenceJ. Kato, H. Suzuki, H. Ikeda, J. Biol. Chem. 1992, 267, 25676 – 25684.
dc.identifier.citedreferenceD. E. Adams, E. M. Shekhtman, E. L. Zechiedrich, M. B. Schmid, N. R. Cozzarelli, Cell 1992, 71, 277 – 288.
dc.identifier.citedreferenceJ. F. Thompson, A. Landy, Nucleic Acids Res. 1988, 16, 9687 – 9705.
dc.identifier.citedreferenceR. T. Dame, M. C. Noom, G. J. L. Wuite, Nature 2006, 444, 387 – 390.
dc.identifier.citedreferenceR. Amit, A. B. Oppenheim, J. Stavans, Biophys. J. 2003, 84, 2467 – 2473.
dc.identifier.citedreferenceT. Hirano, Cell 2016, 164, 847 – 857.
dc.identifier.citedreferenceK. Jeppsson, T. Kanno, K. Shirahige, C. Sjögren, Nat. Rev. Mol. Cell Biol. 2014, 15, 601 – 614.
dc.identifier.citedreferenceM. Merkenschlager, E. P. Nora, Annu. Rev. Genomics Hum. Genet. 2016, 17, 17 – 43.
dc.identifier.citedreferenceJ.-M. Peters, T. Nishiyama, Cold Spring Harbor Perspect. Biol. 2012, 4, a 011130.
dc.identifier.citedreferenceT. G. Gligoris, J. C. Scheinost, F. Bürmann, N. Petela, K.-L. Chan, P. Uluocak, F. Beckouët, S. Gruber, K. Nasmyth, J. Löwe, Science 2014, 346, 963 – 967.
dc.identifier.citedreferenceI. Santi, J. D. McKinney, MBio 2015, 6, e 01999 - 14.
dc.identifier.citedreferenceM. Ganji, I. A. Shaltiel, S. Bisht, E. Kim, A. Kalichava, C. H. Haering, C. Dekker, Science 2018, 360, 102 – 105.
dc.identifier.citedreferenceJ. C. Baxter, B. E. Funnell, Microbiol. Spectr. 2014, 2, PLAS- 0023 - 2014.
dc.identifier.citedreferenceK. Gerdes, M. Howard, F. Szardenings, Cell 2010, 141, 927 – 942.
dc.identifier.citedreferenceD. Hürtgen, S. M. Murray, J. Mascarenhas, V. Sourjik, Adv. Biosyst. 2019, 1800316.
dc.identifier.citedreferenceE. C. Garner, C. S. Campbell, R. D. Mullins, Science 2004, 306, 1021 – 1025.
dc.identifier.citedreferenceE. C. Garner, C. S. Campbell, D. B. Weibel, R. D. Mullins, Science 2007, 315, 1270 – 1274.
dc.identifier.citedreferenceG. Fink, J. Löwe, Proc. Natl. Acad. Sci. USA 2015, 112, E 1845 –E 1850.
dc.identifier.citedreferenceM. L. Erb, J. A. Kraemer, J. K. C. Coker, V. Chaikeeratisak, P. Nonejuie, D. A. Agard, J. Pogliano, eLife 2014, 3, e 03197.
dc.identifier.citedreferenceR. A. Larsen, C. Cusumano, A. Fujioka, G. Lim-Fong, P. Patterson, J. Pogliano, Genes Dev. 2007, 21, 1340 – 1352.
dc.identifier.citedreferenceH. C. Lim, I. V. Surovtsev, B. G. Beltran, F. Huang, J. Bewersdorf, C. Jacobs-Wagner, eLife 2014, 3, e 02758.
dc.identifier.citedreferenceL. C. Hwang, A. G. Vecchiarelli, Y.-W. Han, M. Mizuuchi, Y. Harada, B. E. Funnell, K. Mizuuchi, EMBO J. 2013, 32, 1238 – 1249.
dc.identifier.citedreferenceA. G. Vecchiarelli, K. C. Neuman, K. Mizuuchi, Proc. Natl. Acad. Sci. USA 2014, 111, 4880 – 4885.
dc.identifier.citedreferenceA. G. Vecchiarelli, L. C. Hwang, K. Mizuuchi, Proc. Natl. Acad. Sci. USA 2013, 110, E 1390 –E 1397.
dc.identifier.citedreferenceV. V. Rybenkov, V. Herrera, Z. M. Petrushenko, H. Zhao, J. Mol. Microbiol. Biotechnol. 2014, 24, 371 – 383.
dc.identifier.citedreferenceS. Jun, B. Mulder, Proc. Natl. Acad. Sci. USA 2006, 103, 12388 – 12393.
dc.identifier.citedreferenceS. Jun, A. Wright, Nat. Rev. Microbiol. 2010, 8, 600 – 607.
dc.identifier.citedreferenceL. G. Monahan, A. T. F. Liew, A. L. Bottomley, E. J. Harry, Front. Microbiol. 2014, 5, 19.
dc.identifier.citedreference“Reconstitution of Protein Dynamics Involved in Bacterial Cell Division”, M. Loose, K. Zieske, P. Schwille in Subcellular Biology, Vol. 84: Prokaryotic Cytoskeletons (Eds.: J. Löwe, L. A. Amos ), Springer, Cham, 2017, pp.  419 – 444.
dc.identifier.citedreferenceK. Mizuuchi, A. G. Vecchiarelli, Phys. Biol. 2018, 15, 031001.
dc.identifier.citedreference“FtsZ-Ring Architecture and Its Control by MinCD”, P. Szwedziak, D. Ghosal in Subcellular Biology, Vol. 84: Prokaryotic Cytoskeletons (Eds.: J. Löwe, L. A. Amos ), Springer, Cham, 2017, pp.  213 – 244.
dc.identifier.citedreferenceZ. Hu, J. Lutkenhaus, Mol. Microbiol. 2003, 47, 345 – 355.
dc.identifier.citedreferenceH. Zhou, J. Lutkenhaus, J. Bacteriol. 2003, 185, 4326 – 4335.
dc.identifier.citedreferenceA. G. Vecchiarelli, M. Li, M. Mizuuchi, L. C. Hwang, Y. Seol, K. C. Neuman, K. Mizuuchi, Proc. Natl. Acad. Sci. USA 2016, 113, E 1479 –E 1488.
dc.identifier.citedreferenceZ. Hu, E. P. Gogol, J. Lutkenhaus, Proc. Natl. Acad. Sci. USA 2002, 99, 6761 – 6766.
dc.identifier.citedreferenceD. M. Raskin, P. A. J. de Boer, Proc. Natl. Acad. Sci. USA 1999, 96, 4971 – 4976.
dc.identifier.citedreferenceJ. Lutkenhaus, Annu. Rev. Biochem. 2007, 76, 539 – 562.
dc.identifier.citedreferenceK. Zieske, P. Schwille, eLife 2014, 3, e 03949.
dc.identifier.citedreferenceN. Nanninga, Microbiol. Mol. Biol. Rev. 2001, 65, 319 – 333.
dc.identifier.citedreferenceT. D. Pollard, J.-Q. Wu, Nat. Rev. Mol. Cell Biol. 2010, 11, 149 – 155.
dc.identifier.citedreferenceA. J. F. Egan, W. Vollmer, Ann. N. Y. Acad. Sci. 2013, 1277, 8 – 28.
dc.identifier.citedreferenceT. den Blaauwen, L. W. Hamoen, P. A. Levin, Curr. Opin. Microbiol. 2017, 36, 85 – 94.
dc.identifier.citedreferenceT. den Blaauwen, J. Luirink, MBio 2019, 10, e 00149 - 19.
dc.identifier.citedreferenceM. Pazos, P. Natale, M. Vicente, J. Biol. Chem. 2013, 288, 3219 – 3226.
dc.identifier.citedreferenceA. I. Rico, M. Krupka, M. Vicente, J. Biol. Chem. 2013, 288, 20830 – 20836.
dc.identifier.citedreferenceM. Loose, T. J. Mitchison, Nat. Cell Biol. 2014, 16, 38 – 46.
dc.identifier.citedreferenceA. Martos, A. Raso, M. Jiménez, Z. Petrášek, G. Rivas, P. Schwille, Biophys. J. 2015, 108, 2371 – 2383.
dc.identifier.citedreferenceP. Szwedziak, Q. Wang, T. A. M. Bharat, M. Tsim, J. Löwe, eLife 2014, 3, e 04601.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.