Nuclear transcriptional changes in hypothalamus of Pomc enhancer knockout mice after excessive alcohol drinking
dc.contributor.author | Zhou, Yan | |
dc.contributor.author | Liang, Yupu | |
dc.contributor.author | Low, Malcolm J. | |
dc.contributor.author | Kreek, Mary J. | |
dc.date.accessioned | 2019-11-12T16:22:45Z | |
dc.date.available | WITHHELD_13_MONTHS | |
dc.date.available | 2019-11-12T16:22:45Z | |
dc.date.issued | 2019-11 | |
dc.identifier.citation | Zhou, Yan; Liang, Yupu; Low, Malcolm J.; Kreek, Mary J. (2019). "Nuclear transcriptional changes in hypothalamus of Pomc enhancer knockout mice after excessive alcohol drinking." Genes, Brain and Behavior 18(8): n/a-n/a. | |
dc.identifier.issn | 1601-1848 | |
dc.identifier.issn | 1601-183X | |
dc.identifier.uri | https://hdl.handle.net/2027.42/152013 | |
dc.description.abstract | Persistent alterations of proopiomelanocortin (Pomc) and mu‐opioid receptor (Oprm1) activity and stress responses after alcohol are critically involved in vulnerability to alcohol dependency. Gene transcriptional regulation altered by alcohol may play important roles. Mice with genome‐wide deletion of neuronal Pomc enhancer1 (nPE1−/−), had hypothalamic‐specific partial reductions of beta‐endorphin and displayed lower alcohol consumption, compared to wildtype littermates (nPE1+/+). We used RNA‐Seq to measure steady‐state nuclear mRNA transcripts of opioid and stress genes in hypothalamus of nPE1+/+ and nPE1−/− mice after 1‐day acute withdrawal from chronic excessive alcohol drinking or after water. nPE1−/− had lower basal Pomc and Pdyn (prodynorphin) levels compared to nPE1+/+, coupled with increased basal Oprm1 and Oprk1 (kappa‐opioid receptor) levels, and low alcohol drinking increased Pomc and Pdyn to the basal levels of nPE1+/+ in the water group, without significant effects on Oprm1 and Oprk1. In nPE1+/+, excessive alcohol intake increased Pomc and Oprm1, with no effect on Pdyn or Oprk1. For stress genes, nPE1−/− had lowered basal Oxt (oxytocin) and Avp (arginine vasopressin) that were restored by low alcohol intake to basal levels of nPE1+/+. In nPE1+/+, excessive alcohol intake decreased Oxt and Avpi1 (AVP‐induced protein1). Functionally examining the effect of pharmacological blockade of mu‐opioid receptor, we found that naltrexone reduced excessive alcohol intake in nPE1+/+, but not nPE1−/−. Our results provide evidence relevant to the transcriptional profiling of the critical genes in mouse hypothalamus: enhanced opioid and reduced stress gene transcripts after acute withdrawal from excessive alcohol may contribute to altered reward and stress responses.Transcriptional profiling of the critical genes in mouse hypothalamus: enhanced opioid and reduced stress gene transcripts after acute withdrawal from excessive alcohol may contribute to altered reward and stress responses. | |
dc.publisher | Blackwell Publishing Ltd | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | RNA‐Seq | |
dc.subject.other | stress | |
dc.subject.other | alcohol | |
dc.subject.other | nPE1 knockout | |
dc.subject.other | nuclear transcript | |
dc.subject.other | opioid | |
dc.title | Nuclear transcriptional changes in hypothalamus of Pomc enhancer knockout mice after excessive alcohol drinking | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurology and Neurosciences | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152013/1/gbb12600.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152013/2/gbb12600_am.pdf | |
dc.identifier.doi | 10.1111/gbb.12600 | |
dc.identifier.source | Genes, Brain and Behavior | |
dc.identifier.citedreference | Grisel JE, Mogil JS, Grahame NJ, et al. Ethanol oral self‐administration is increased in mutant mice with decreased beta‐endorphin expression. Brain Res. 1999; 835: 62 ‐ 67. | |
dc.identifier.citedreference | Zhou Y, Lapingo C. Modulation of pro‐opiomelanocortin gene expression by ethanol in mouse anterior pituitary corticotrope tumor cell AtT20. Regul Pept. 2014; 192‐193: 6 ‐ 14. | |
dc.identifier.citedreference | Lacar B, Linker SB, Jaeger BN, et al. Nuclear RNA‐seq of single neurons reveals molecular signatures of activation. Nat Commun. 2016; 7: 11022. | |
dc.identifier.citedreference | Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav. 2005; 84: 53 ‐ 63. | |
dc.identifier.citedreference | Jakubowski M, Roberts JL. Multiplex solution hybridization‐ribonuclease protection assay for quantitation of different ribonucleic Acid transcripts from snap‐frozen neuroendocrine tissues of individual animals. J Neuroendocrinol. 1992; 4: 79 ‐ 89. | |
dc.identifier.citedreference | Andrews, S. ( 2010 ) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk?/projects/fastqc/. Accessed 2010. | |
dc.identifier.citedreference | Dobin A, Davis C, Schlesinger F, et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics. 2013; 29: 15 ‐ 21. | |
dc.identifier.citedreference | Liao Y, Smyth GK, Shi W. Feature Counts: an efficient general‐purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30: 923 ‐ 930. | |
dc.identifier.citedreference | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014; 15: 550. | |
dc.identifier.citedreference | Roberts A, McDonald J, Heyser C, et al. μ‐Opioid receptor knockout mice do not self‐administer alcohol. J Pharmacol Exp Ther. 2000; 293: 1002 ‐ 1008. | |
dc.identifier.citedreference | Hall FS, Sora I, Uhl GR. Ethanol consumption and reward are decreased in mu‐opiate receptor knockout mice. Psychopharmacology. 2001; 154: 43 ‐ 49. | |
dc.identifier.citedreference | Racz I, Schurmann B, Karpushova A, et al. The opioid peptides enkephalin and beta‐endorphin in alcohol dependence. Biol Psychiatry. 2008; 64: 989 ‐ 997. | |
dc.identifier.citedreference | Ben Hamida S, Boulos LJ, McNicholas M, Charbogne P, Kieffer BL. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol. 2019; 24: 28 ‐ 39. | |
dc.identifier.citedreference | Grahame NJ, Mosemiller AK, Low MJ, Froehlich JC. Naltrexone and alcohol drinking in mice lacking beta‐endorphin by site‐directed mutagenesis. Pharmacol Biochem Behav. 2000; 67: 759 ‐ 766. | |
dc.identifier.citedreference | D’Addario C, Caputi FF, Rimondini R, et al. Different alcohol exposures induce selective alterations on the expression of dynorphin and nociceptin systems related genes in rat brain. Addict Biol. 2013; 13: 425 ‐ 433. | |
dc.identifier.citedreference | Kissler JL, Sirohi S, Reis DJ, et al. The one‐two punch of alcoholism: role of central amygdala dynorphins/kappa‐opioid receptors. Biol Psychiatry. 2014; 75: 774 ‐ 782. | |
dc.identifier.citedreference | Lalanne L, Ayranci G, Kieffer BL, Lutz PE. The kappa opioid receptor: from addiction to depression, and back. Front Psychiatry. 2014; 5: 170 eCollection. | |
dc.identifier.citedreference | Greenwald MK. Anti‐stress neuropharmacological mechanisms and targets for addiction treatment: a translational framework. Neurobiol Stress. 2018; 9: 84 ‐ 104. | |
dc.identifier.citedreference | Harding AJ, Halliday GM, Ng JL, Harper CG, Kril JJ. Loss of vasopressin‐immunoreactive neurons in alcoholics is dose‐related and time‐dependent. Neuroscience. 1996; 72: 699 ‐ 708. | |
dc.identifier.citedreference | Silva SM, Madeira MD, Ruela C, Paula‐Barbosa MM. Prolonged alcohol intake leads to irreversible loss of vasopressin and oxytocin neurons in the paraventricular nucleus of the hypothalamus. Brain Res. 2002; 925: 76 ‐ 88. | |
dc.identifier.citedreference | Zhou Y, Colombo G, Carai MAM, Ho A, Gessa GL, Kreek MJ. Involvement of arginine vasopressin and V1b receptor in alcohol drinking in Sardinian alcohol‐preferring rats. Alcohol Clin Exp Res. 2011; 35: 1876 ‐ 1883. | |
dc.identifier.citedreference | Hansson AC, Koopmann A, Uhrig S, et al. Oxytocin reduces alcohol cue‐reactivity in alcohol‐dependent rats and humans. Neuropsychopharmacology. 2018; 43: 1235 ‐ 1246. | |
dc.identifier.citedreference | Hwang BH, Froehlich JC, Hwang WS, Lumeng L, Li T‐K. More vasopressin mRNA in the paraventricular hypothalamic nucleus of alcohol‐preferring rats and high alcohol‐drinking rats selectively bred for high alcohol preference. Alcohol Clin Exp Res. 1998; 22: 664 ‐ 669. | |
dc.identifier.citedreference | Zorrilla EP, Valdez GR, Weiss F. Changes in levels of regional CRF‐like‐immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Psychopharmacology (Berl). 2001; 158: 374 ‐ 381. | |
dc.identifier.citedreference | Nicod M, Michlig S, Flahaut M, et al. A novel vasopressin‐induced transcript promotes MAP kinase activation and ENaC downregulation. EMBO J. 2002; 21: 5109 ‐ 5117. | |
dc.identifier.citedreference | Polimanti R, Zhao H, Farrer LA, Kranzler HR, Gelernter J. Ancestry‐specific and sex‐specific risk alleles identified in a genome‐wide gene‐by‐alcohol dependence interaction study of risky sexual behaviors. Am J Med Genet B Neuropsychiatr Genet. 2017; 174: 846 ‐ 853. | |
dc.identifier.citedreference | Angelogianni P, Gianoulakis C. Chronic ethanol increases proopiomelanocortin gene expression in the rat hypothalamus. Neuroendocrinology. 1993; 57: 106 ‐ 114. | |
dc.identifier.citedreference | Zhou Y, Colombo G, Niikura K, et al. Voluntary alcohol drinking enhances proopiomelanocortin (POMC) gene expression in nucleus accumbens shell and hypothalamus of Sardinian alcohol‐preferring rats. Alcohol Clin Exp Res. 2013; 37: E131 ‐ E140. | |
dc.identifier.citedreference | Olney JJ, Navarro M, Thiele TE. Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders. Front Neurosci. 2014; 8: 128. | |
dc.identifier.citedreference | Rasmussen DD, Boldt BM, Wilkinson CW, Mitton DR. Chronic daily ethanol and withdrawal: 3. Forebrain pro‐opiomelanocortin gene expression and implications for dependence, relapse, and deprivation effect. Alcohol Clin Exp Res. 2002; 26: 535 ‐ 546. | |
dc.identifier.citedreference | Amalric M, Cline EJ, Martinez JL Jr, Bloom FE, Koob G, F. Rewarding properties of beta‐endorphin as measured by conditioned place preference. Psychopharmacology (Berl). 1987; 91: 14 ‐ 19. | |
dc.identifier.citedreference | Koch M, Varela L, Kim JG, et al. Hypothalamic POMC neurons promote cannabinoid‐induced feeding. Nature. 2015; 519: 45 ‐ 50. | |
dc.identifier.citedreference | Spanagel R, Heinz A, Bals‐Kubik R, Shippenberg TS. Beta‐endorphin‐induced locomotor stimulation and reinforcement are associated with an increase in dopamine release in the nucleus accumbens. Psychopharmacology (Berl). 1991; 104: 51 ‐ 56. | |
dc.identifier.citedreference | Olive MF, Koenig HN, Nannini MA, Hodge CW. Stimulation of endorphin neuro‐transmission in the nucleus accumbens by ethanol, cocaine, and amphetamine. J Neurosci. 2001; 21: RC184. | |
dc.identifier.citedreference | Marinelli PW, Quirion R, Gianoulakis C. A microdialysis profile of beta‐endorphin and catecholamines in the rat nucleus accumbens following alcohol administration. Psychopharmacology (Berl). 2003; 169: 60 ‐ 67. | |
dc.identifier.citedreference | Roth‐Deri I, Green‐Sadan T, Yadid G. Beta‐endorphin and drug‐induced reward and reinforcement. Prog Neurobiol. 2008; 86: 1 ‐ 21. | |
dc.identifier.citedreference | Zhou Y, Kreek MJ. Involvement of activated brain stress responsive systems in excessive and “relapse” alcohol drinking in rodent models: implications for therapeutics. J Pharmacol Exp Ther. 2018; 366: 9 ‐ 20. | |
dc.identifier.citedreference | Lam DD, de Souza FSJ, Nasif S, et al. Partially redundant enhancers cooperatively maintain Mammalian Pomc expression above a critical functional threshold. PLoS Genet. 2015; 11: e1004935. | |
dc.identifier.citedreference | Zhou Y, Rubinstein M, Low MJ, Kreek MJ. Hypothalamic‐specific proopiomelanocortin deficiency reduces alcohol drinking in male and female mice. Genes Brain Behav. 2017; 16: 449 ‐ 461. | |
dc.identifier.citedreference | Hoffman PL. Chronic ethanol exposure uncouples vasopressin synthesis and secretion in rats. Neuropharmacology. 1991; 30: 1245 ‐ 1249. | |
dc.identifier.citedreference | Harper KM, Knapp DJ, Criswell HE, Breese GR. Vasopressin and alcohol: a multifaceted relationship. Psychopharmacology (Berl). 2018; 235: 3363 ‐ 3379. | |
dc.identifier.citedreference | Pedersen CA. Oxytocin, tolerance, and the dark side of addiction. Int Rev Neurobiol. 2017; 136: 239 ‐ 274. | |
dc.identifier.citedreference | Pomrenze MB, Fetterly TL, Winder DG, Messing RO. The corticotropin releasing factor receptor 1 in alcohol use disorder: still a valid drug target? Alcohol Clin Exp Res. 2017; 41: 1986 ‐ 1999. | |
dc.identifier.citedreference | Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF. Dysregulation of brain stress systems mediates compulsive alcohol drinking. Curr Opin Behav Sci. 2017; 13: 85 ‐ 90. | |
dc.identifier.citedreference | Anderson RI, Becker HC. Role of the dynorphin/kappa opioid receptor system in the motivational effects of ethanol. Alcohol Clin Exp Res. 2017; 41: 1402 ‐ 1418. | |
dc.identifier.citedreference | Koob GF, Kreek MJ. Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry. 2007; 164: 1149 ‐ 1159. | |
dc.identifier.citedreference | Koob GF, Mason BJ. Existing and future drugs for the treatment of the dark side of addiction. Annu Rev Pharmacol Toxicol. 2016; 56: 299 ‐ 322. | |
dc.identifier.citedreference | Inder W, Joyce P, Ellis M, Evans M, Livesey J, Donald P. Effects of alcoholism on the hypothalamic‐pituitary‐adrenal axis: interaction with endogenous opioid peptides. Clin Endocrinol (Oxf). 1995; 43: 283 ‐ 290. | |
dc.identifier.citedreference | Richardson HN, Lee SY, O’Dell LE, Koob GF, Rivier CL. Alcohol self‐administration acutely stimulates the hypothalamic‐pituitary‐adrenal axis, but alcohol dependence leads to a dampened neuroendocrine state. Eur J Neurosci. 2008; 28: 1641 ‐ 1653. | |
dc.identifier.citedreference | Wang Z, Gerstein M, Snyder M. RNA‐Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10: 57 ‐ 63. | |
dc.identifier.citedreference | Hwa LS, Chu A, Levinson SA, Kayyali TM, DeBold JF, Miczek KA. Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% alcohol. Alcohol Clin Exp Res. 2011; 35: 1938 ‐ 1947. | |
dc.identifier.citedreference | Mitchell JA, Clay I, Umlauf D, et al. Nuclear RNA sequencing of the mouse erythroid cell transcriptome. PLoS One. 2012; 7: e49274. | |
dc.identifier.citedreference | Grindberg RV, Yee‐Greenbaum JL, McConnell MJ, et al. RNA‐sequencing from single nuclei. Proc Natl Acad Sci U S A. 2013; 110: 19802 ‐ 19807. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.