Show simple item record

Tensor graphical lasso (TeraLasso)

dc.contributor.authorGreenewald, Kristjan
dc.contributor.authorZhou, Shuheng
dc.contributor.authorHero, Alfred
dc.date.accessioned2019-11-12T16:22:49Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-11-12T16:22:49Z
dc.date.issued2019-11
dc.identifier.citationGreenewald, Kristjan; Zhou, Shuheng; Hero, Alfred (2019). "Tensor graphical lasso (TeraLasso)." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 81(5): 901-931.
dc.identifier.issn1369-7412
dc.identifier.issn1467-9868
dc.identifier.urihttps://hdl.handle.net/2027.42/152015
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherNon‐separable factor models
dc.subject.otherPrecision matrix estimation
dc.subject.otherSparsity
dc.subject.otherKronecker sum
dc.subject.otherCovariance modelling for array‐valued data
dc.subject.otherConvergence guarantees
dc.titleTensor graphical lasso (TeraLasso)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152015/1/rssb12339_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152015/2/rssb12339.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152015/3/rssb12339-sup-0001-Supinfo.pdf
dc.identifier.doi10.1111/rssb.12339
dc.identifier.sourceJournal of the Royal Statistical Society: Series B (Statistical Methodology)
dc.identifier.citedreferenceRudelson, M. and Zhou, S. ( 2017 ) High dimensional errors‐in‐variables models with dependent measurements. Electron. J. Statist., 11, 1699 – 1797.
dc.identifier.citedreferenceMeinshausen, N. and Bühlmann, P. ( 2006 ) High‐dimensional graphs and variable selection with the lasso. Ann. Statist., 34, 1436 – 1462.
dc.identifier.citedreferenceNesterov, Y. ( 1983 ) A method of solving a convex programming problem with convergence rate o (1/k2). Sov. Math. Dokl., 27, 372 – 376.
dc.identifier.citedreferenceNesterov, Y. ( 2004 ) Introductory Lectures on Convex Optimization: Applied Optimization. Boston: Kluwer.
dc.identifier.citedreferenceNesterov, Yu. ( 2013 ) Gradient methods for minimizing composite objective function. Math. Programmng, 140, 125 – 161.
dc.identifier.citedreferencePouryazdian, S., Beheshti, S. and Krishnan, S. ( 2016 ) CANDECOMP/PARAFAC model order selection based on reconstruction error in the presence of Kronecker structured colored noise. Digtl Signl Process., 48, 12 – 26.
dc.identifier.citedreferencePreisler, H. K., Hicke, J. A., Ager, A. A. and Hayes, J. L. ( 2012 ) Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Ecology, 93, 2421 – 2434.
dc.identifier.citedreferenceRothman, A. J., Bickel, P. J., Levina, E. and Zhu, J. ( 2008 ) Sparse permutation invariant covariance estimation. Electron. J. Statist., 2, 494 – 515.
dc.identifier.citedreferenceSchmitt, U., Louis, A. K., Darvas, F., Buchner, H. and Fuchs, M. ( 2001 ) Numerical aspects of spatio‐temporal current density reconstruction from EEG‐/MEG‐data. IEEE Trans. Med. Imgng, 20, 314 – 324.
dc.identifier.citedreferenceShi, X., Wei, Y. and Ling, S. ( 2013 ) Backward error and perturbation bounds for high order Sylvester tensor equation. Lin. Multlin. Alg., 61, 1436 – 1446.
dc.identifier.citedreferenceTseng, P. ( 2010 ) Approximation accuracy, gradient methods, and error bound for structured convex optim. Math. Progrmmng, 125, 263 – 295.
dc.identifier.citedreferenceTsiligkaridis, T. and Hero, A. ( 2013 ) Covariance estimation in high dimensions via Kronecker product expansions. IEEE Trans. Signl. Process., 61, 5347 – 5360.
dc.identifier.citedreferenceTsiligkaridis, T., Hero, A. and Zhou, S. ( 2013 ) On convergence of Kronecker graphical lasso algorithms. IEEE Trans. Signl Process., 61, 1743 – 1755.
dc.identifier.citedreferenceTucker, L. R. ( 1966 ) Some mathematical notes on three‐mode factor analysis. Psychometrika, 31, 279 – 311.
dc.identifier.citedreferenceVan Loan, C. F. ( 2000 ) The ubiquitous Kronecker product. J. Computnl Appl. Math., 123, 85 – 100.
dc.identifier.citedreferenceWerner, K., Jansson, M. and Stoica, P. ( 2008 ) On estimation of cov. matrices with Kronecker product structure. IEEE Trans. Signl. Process., 56, 478 – 491.
dc.identifier.citedreferenceWood, S. N. ( 2006 ) Low‐rank scale‐invariant tensor product smooths for generalized additive mixed models. Biometrics, 62, 1025 – 1036.
dc.identifier.citedreferenceWood, S. N., Pya, N. and Saefken, B. ( 2016 ) Smoothing parameter and model selection for general smooth models. J. Am. Statist. Ass., 111, 1548 – 1563.
dc.identifier.citedreferenceYuan, M. and Lin, Y. ( 2007 ) Model selection and estimation in the Gaussian graphical model. Biometrika, 94, 19 – 35.
dc.identifier.citedreferenceZhang, C.‐H. ( 2010 ) Nearly unbiased variable selection under minimax concave penalty. Ann. Statist., 38, 894 – 942.
dc.identifier.citedreferenceZhou, S. ( 2014 ) Gemini: graph estimation with matrix variate normal instances. Ann. Statist., 42, 532 – 562.
dc.identifier.citedreferenceZhou, S., Lafferty, J. and Wasserman, L. ( 2010 ) Time varying undirected graphs. Mach. Learn., 80, 295 – 319.
dc.identifier.citedreferenceZhou, S., Rütimann, P., Xu, M. and Bühlmann, P. ( 2011 ) High‐dimensional covariance estimation based on Gaussian graphical models. J. Mach. Learn. Res., 12, 2975 – 3026.
dc.identifier.citedreferenceAllen, G. I. and Tibshirani, R. ( 2010 ) Transposable regularized covariance models with an application to missing data imputation. Ann. Appl. Statist., 4, 764 – 790.
dc.identifier.citedreferenceAndrianov, S. N. ( 1997 ) A matrix representation of lie algebraic methods for design of nonlinear beam lines. AIP Conf. Proc., 391, 355 – 360.
dc.identifier.citedreferenceAugustin, N. H., Musio, M., von Wilpert, K., Kublin, E., Wood, S. N. and Schumacher, M. ( 2009 ) Modeling spatiotemporal forest health monitoring data. J. Am. Statist. Ass., 104, 899 – 911.
dc.identifier.citedreferenceBanerjee, O., El Ghaoui, L. and d’Aspremont, A. ( 2008 ) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9, 485 – 516.
dc.identifier.citedreferenceBeck, A. and Teboulle, M. ( 2009 ) A fast iterative shrinkage‐thresholding algorithm for linear inverse problems. SIAM J. Imgng Sci., 2, 183 – 202.
dc.identifier.citedreferenceBeckermann, B., Kressner, D. and Tobler, C. ( 2013 ) An error analysis of Galerkin projection methods for linear systems with tensor product structure. SIAM J. Numer. Anal., 51, 3307 – 3326.
dc.identifier.citedreferenceBoyd, S. and Vandenberghe, L. ( 2009 ) Convex Optimization. New York: Cambridge University Press.
dc.identifier.citedreferenceChapman, A., Nabi‐Abdolyousefi, M. and Mesbahi, M. ( 2014 ) Controllability and observability of network‐of‐networks via Cartesian products. IEEE Trans. Autom. Control, 59, 2668 – 2679.
dc.identifier.citedreferenceCombettes, P. L. and Wajs, V. R. ( 2005 ) Signal recovery by proximal forward‐backward splitting. Multsc. Modlng Simuln, 4, 1168 – 1200.
dc.identifier.citedreferenceDawid, A. P. ( 1981 ) Some matrix‐variate distribution theory: notational considerations and a Bayesian application. Biometrika, 68, 265 – 274.
dc.identifier.citedreferenceDorr, F. W. ( 1970 ) The direct solution of the discrete Poisson equation on a rectangle. SIAM Rev., 12, 248 – 263.
dc.identifier.citedreferenceEilers, P. H. and Marx, B. D. ( 2003 ) Multivariate calibration with temperature interaction using two‐dimensional penalized signal regression. Chemometr. Intell. Lab. Syst., 66, 159 – 174.
dc.identifier.citedreferenceEllner, N. S. ( 1986 ) New ADI model problem applications. In Proc. Association for Computing Machinery Fall Jt Computer Conf., pp. 528 – 534. Institute of Electrical and Electronics Engineers Computer Society Press.
dc.identifier.citedreferenceFaber, N. K. M., Bro, R. and Hopke, P. K. ( 2003 ) Recent developments in CANDECOMP/PARAFAC algorithms: a critical review. Chemometr. Intell. Lab. Syst., 65, 119 – 137.
dc.identifier.citedreferenceFan, J. and Li, R. ( 2001 ) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Ass., 96, 1348 – 1360.
dc.identifier.citedreferenceFey, M., Lenssen, J. E., Weichert, F. and Müller, H. ( 2018 ) Splinecnn: fast geometric deep learning with continuous b‐spline kernels. In Proc. Conf. Computer Vision and Pattern Recognition, pp. 869 – 877. Institute of Electrical and Electronics Engineers.
dc.identifier.citedreferenceFriedman, J., Hastie, T. and Tibshirani, R. ( 2008 ) Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9, 432 – 441.
dc.identifier.citedreferenceGrasedyck, L. ( 2004 ) Existence and computation of low Kronecker‐rank approximations for large linear systems of tensor product structure. Computing, 72, 247 – 265.
dc.identifier.citedreferenceGreenewald, K. and Hero, A. ( 2015 ) Robust Kronecker product PCA for spatio‐temporal covariance estimation. IEEE Trans. Signl Process., 63, 6368 – 6378.
dc.identifier.citedreferenceGreenewald, K., Park, S., Zhou, S. and Giessing, A. ( 2017 ) Time‐dependent spatially varying graphical models, with application to brain fMRI data analysis. In Advances in Neural Information Processing Systems 30 (eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett ), pp. 5832 – 5840. Red Hook: Curran Associates.
dc.identifier.citedreferenceGuillot, D., Rajaratnam, B., Rolfs, B., Maleki, A. and Wong, I. ( 2012 ) Iterative thresholding algorithm for sparse inverse covariance estimation. In Advances in Neural Information Processing Systems, pp. 1574 – 1582.
dc.identifier.citedreferenceHammack, R., Imrich, W. and Klavžar, S. ( 2011 ) Handbook of Product Graphs. Boca Raton: CRC Press.
dc.identifier.citedreferenceHarshman, R. A. and Lundy, M. E. ( 1994 ) PARAFAC: parallel factor analysis. Computnl Statist. Data Anal., 18, 39 – 72.
dc.identifier.citedreferenceHoff, P. D. ( 2016 ) Equivariant and scale‐free Tucker decomposition models. Baysn Anal., 11, 627 – 648.
dc.identifier.citedreferenceHolland, D., Chang, L., Ernst, T. M., Curran, M., Buchthal, S. D., Alicata, D., Skranes, J., Johansen, H., Hernandez, A. and Yamakawa, R. ( 2014 ) Structural growth trajectories and rates of change in the first 3 months of infant brain development. J. Am. Med. Ass. Neurol., 71, 1266 – 1274.
dc.identifier.citedreferenceImrich, W., Klavžar, S. and Rall, D. F. ( 2008 ) Topics in Graph Theory: Graphs and Their Cartesian Product. Boca Raton: Peters–CRC Press.
dc.identifier.citedreferenceJohndrow, J. E., Bhattacharya, A. and Dunson, D. B. ( 2017 ) Tensor decompositions and sparse log‐linear models. Ann. Statist., 45, 1 – 38.
dc.identifier.citedreferenceKalaitzis, A., Lafferty, J., Lawrence, N. and Zhou, S. ( 2013 ) The bigraphical lasso. In Proc. Int. Conf. Machine Learning, pp. 1229 – 1237. Norristown: Omnipress.
dc.identifier.citedreferenceKolda, T. G. and Bader, B. W. ( 2009 ) Tensor decompositions and applications. SIAM Rev., 51, 455 – 500.
dc.identifier.citedreferenceKotzagiannidis, M. S. and Dragotti, P. L. ( 2019 ) Splines and wavelets on circulant graphs. Appl. Computnl Harm. Anal., 47, 481 – 515.
dc.identifier.citedreferenceKressner, D. and Tobler, C. ( 2010 ) Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matr. Anal. Appl., 31, 1688 – 1714.
dc.identifier.citedreferenceLee, D.‐J. and Durbán, M. ( 2011 ) P‐spline ANOVA‐type interaction models for spatio‐temporal smoothing. Statist. Modllng, 11, 49 – 69.
dc.identifier.citedreferenceLeng, C. and Tang, C. Y. ( 2012 ) Sparse matrix graphical models. J. Am. Statist. Ass., 107, 1187 – 1200.
dc.identifier.citedreferenceLoh, P.‐L. and Wainwright, M. J. ( 2013 ) Regularized m‐estimators with nonconvexity: statistical and algorithmic theory for local optima. In Advances in Neural Information Processing Systems, pp. 476 – 484. Red Hook: Curran Associates.
dc.identifier.citedreferenceLoh, P.‐L. and Wainwright, M. J. ( 2017 ) Support recovery without incoherence: a case for nonconvex regularization. Ann. Statist., 45, 2455 – 2482.
dc.identifier.citedreferenceLuenberger, D. ( 1966 ) Observers for multivariable systems. IEEE Trans. Autom. Control, 11, 190 – 197.
dc.identifier.citedreferenceMatthews, B. W. ( 1975 ) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta, 405, 442 – 451.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.