Show simple item record

Environmental heterogeneity and not vicariant biogeographic barriers generate community-wide population structure in desert-adapted snakes

dc.contributor.authorMyers, Edward A.
dc.contributor.authorXue, Alexander T.
dc.contributor.authorGehara, Marcelo
dc.contributor.authorCox, Christian L.
dc.contributor.authorDavis Rabosky, Alison R.
dc.contributor.authorLemos‐espinal, Julio
dc.contributor.authorMartínez‐gómez, Juan E.
dc.contributor.authorBurbrink, Frank T.
dc.date.accessioned2019-11-12T16:23:14Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-11-12T16:23:14Z
dc.date.issued2019-10
dc.identifier.citationMyers, Edward A.; Xue, Alexander T.; Gehara, Marcelo; Cox, Christian L.; Davis Rabosky, Alison R.; Lemos‐espinal, Julio ; Martínez‐gómez, Juan E. ; Burbrink, Frank T. (2019). "Environmental heterogeneity and not vicariant biogeographic barriers generate community-wide population structure in desert-adapted snakes." Molecular Ecology 28(20): 4535-4548.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/152024
dc.description.abstractGenetic structure can be influenced by local adaptation to environmental heterogeneity and biogeographic barriers, resulting in discrete population clusters. Geographic distance among populations, however, can result in continuous clines of genetic divergence that appear as structured populations. Here, we evaluate the relevant importance of these three factors over a landscape characterized by environmental heterogeneity and the presence of a hypothesized biogeographic barrier in producing population genetic structure within 13 codistributed snake species using a genomic data set. We demonstrate that geographic distance and environmental heterogeneity across western North America contribute to population genomic divergence. Surprisingly, landscape features long thought to contribute to biogeographic barriers play little role in divergence community wide. Our results suggest that isolation by environment is the most important contributor to genomic divergence. Furthermore, we show that models of population clustering that incorporate spatial information consistently outperform nonspatial models, demonstrating the importance of considering geographic distances in population clustering. We argue that environmental and geographic distances as drivers of community-wide divergence should be explored before assuming the role of biogeographic barriers.see also the Perspective by Alencar and Quental
dc.publisherSmithsonian Books
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpopulation structure
dc.subject.othercomparative phylogeography
dc.subject.othergene flow
dc.subject.othercommunity ecology
dc.subject.otherbiogeographic barriers
dc.subject.othergeneralized dissimilarity modelling
dc.titleEnvironmental heterogeneity and not vicariant biogeographic barriers generate community-wide population structure in desert-adapted snakes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/1/mec15182-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/2/mec15182_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/3/mec15182-sup-0005-AppendixS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/4/mec15182-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/5/mec15182-sup-0010-AppendixS10.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/6/mec15182.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/7/mec15182-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152024/8/mec15182-sup-0006-AppendixS6.pdf
dc.identifier.doi10.1111/mec.15182
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceRiddle, B. R., & Hafner, D. J. ( 2006 ). A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota. Journal of Arid Environments, 66 ( 3 ), 435 - 461. https://doi.org/10.1016/j.jaridenv.2006.01.014
dc.identifier.citedreferencePhillipsen, I. C., Kirk, E. H., Bogan, M. T., Mims, M. C., Olden, J. D., & Lytle, D. A. ( 2015 ). Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Molecular Ecology, 24 ( 1 ), 54 - 69. https://doi.org/10.1111/mec.13003
dc.identifier.citedreferencePrevosti, A., Ocaña, J., & Alonso, G. ( 1975 ). Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theoretical and Applied Genetics, 45 ( 6 ), 231 - 241. https://doi.org/10.1007/BF00831894
dc.identifier.citedreferencePritchard, J. K., Stephens, M., & Donnelly, P. ( 2000 ). Inference of population structure using multilocus genotype data. Genetics, 155 ( 2 ), 945 - 959.
dc.identifier.citedreferencePurcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., - Sham, P. C. ( 2007 ). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81 ( 3 ), 559 - 575. https://doi.org/10.1086/519795
dc.identifier.citedreferencePyron, R. A., & Burbrink, F. T. ( 2009 ). Systematics of the Common Kingsnake ( Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa, 2241 ( 27 ), 22 - 32.
dc.identifier.citedreferencePyron, R. A., & Burbrink, F. T. ( 2010 ). Hard and soft allopatry: Physically and ecologically mediated modes of geographic speciation. Journal of Biogeography, 37 ( 10 ), 2005 - 2015. https://doi.org/10.1111/j.1365-2699.2010.02336.x
dc.identifier.citedreferencePyron, R. A., & Burbrink, F. T. ( 2012 ). Extinction, ecological opportunity, and the origins of global snake diversity. Evolution, 66 ( 1 ), 163 - 178. https://doi.org/10.1111/j.1558-5646.2011.01437.x
dc.identifier.citedreferenceReid, B. N., Mladenoff, D. J., & Peery, M. Z. ( 2017 ). Genetic effects of landscape, habitat preference and demography on three co-occurring turtle species. Molecular Ecology, 26 ( 3 ), 781 - 798. https://doi.org/10.1111/mec.13962
dc.identifier.citedreferenceRichmond, J. Q., Wood, D. A., Westphal, M. F., Vandergast, A. G., Leaché, A. D., Saslaw, L. R., - Fisher, R. N. ( 2017 ). Persistence of historical population structure in an endangered species despite near-complete biome conversion in California’s San Joaquin Desert. Molecular Ecology, 26 ( 14 ), 3618 - 3635. https://doi.org/10.1111/mec.14125
dc.identifier.citedreferenceRobertson, J. M., Murphy, M. A., Pearl, C. A., Adams, M. J., Páez-Vacas, M. I., Haig, S. M., - Funk, W. C. ( 2018 ). Regional variation in drivers of connectivity for two frog species ( Rana pretiosa and R. luteiventris ) from the US Pacific Northwest. Molecular Ecology, 27 ( 16 ), 3242 - 3256.
dc.identifier.citedreferenceRodríguez-Robles, J. A., Bell, C. J., & Greene, H. W. ( 1999 ). Food habits of the glossy snake, Arizona elegans, with comparisons to the diet of sympatric long-nosed snakes, Rhinocheilus lecontei. Journal of Herpetology, 33 ( 1 ), 87 - 92. https://doi.org/10.2307/1565546
dc.identifier.citedreferenceSchield, D. R., Adams, R. H., Card, D. C., Corbin, A. B., Jezkova, T., Hales, N. R.,- Smith, L. L. ( 2018 ). Cryptic genetic diversity, population structure, and gene flow in the Mojave Rattlesnake ( Crotalus scutulatus ). Molecular Phylogenetics and Evolution, 127, 669 - 681.
dc.identifier.citedreferenceSchmidt, R. H. Jr ( 1979 ). A climatic delineation of the -real- Chihuahuan Desert. Journal of Arid Environments, 2 ( 3 ), 243 - 250. https://doi.org/10.1016/S0140-1963(18)31774-9
dc.identifier.citedreferenceSexton, J. P., Hangartner, S. B., & Hoffmann, A. A. ( 2014 ). Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution, 68 ( 1 ), 1 - 15. https://doi.org/10.1111/evo.12258
dc.identifier.citedreferenceShafer, A. B. A., & Wolf, J. B. W. ( 2013 ). Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecology Letters, 16 ( 7 ), 940 - 950. https://doi.org/10.1111/ele.12120
dc.identifier.citedreferenceSinghal, S., Huang, H., Grundler, M. R., Marchán-Rivadeneira, M. R., Holmes, I., Title, P. O., - Rabosky, D. L. ( 2018 ). Does population structure predict the rate of speciation? A comparative test across Australia’s most diverse vertebrate radiation. The American Naturalist, 192 ( 4 ), 432 - 447. https://doi.org/10.1086/699515
dc.identifier.citedreferenceSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. ( 2010 ). The biology of speciation. Evolution, 64 ( 2 ), 295 - 315. https://doi.org/10.1111/j.1558-5646.2009.00877.x
dc.identifier.citedreferenceThomassen, H. A., Buermann, W., Milá, B., Graham, C. H., Cameron, S. E., Schneider, C. J., - Smith, T. B. ( 2010 ). Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization. Evolutionary Applications, 3 ( 1 ), 1 - 16. https://doi.org/10.1111/j.1752-4571.2009.00093.x
dc.identifier.citedreferenceThuiller, W., Georges, D., & Engler, R. ( 2013 ). biomod2: Ensemble platform for species distribution modeling. R Package Version. https://doi.org/10.1017/CBO9781107415324.004
dc.identifier.citedreferenceVavrek, M. J. ( 2011 ). Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14 ( 1 ), 1T.
dc.identifier.citedreferenceVekemans, X., & Hardy, O. J. ( 2004 ). New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology, 13 ( 4 ), 921 - 935. https://doi.org/10.1046/j.1365-294X.2004.02076.x
dc.identifier.citedreferenceWang, I. J., & Bradburd, G. S. ( 2014 ). Isolation by environment. Molecular Ecology, 23 ( 23 ), 5649 - 5662. https://doi.org/10.1111/mec.12938
dc.identifier.citedreferenceWang, I. J., Glor, R. E., & Losos, J. B. ( 2013 ). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16 ( 2 ), 175 - 182. https://doi.org/10.1111/ele.12025
dc.identifier.citedreferenceWarren, D. L., Glor, R. E., & Turelli, M. ( 2010 ). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33 ( 3 ), 607 - 611. https://doi.org/10.1111/j.1600-0587.2009.06142.x
dc.identifier.citedreferenceWood, D. A., Vandergast, A. G., Barr, K. R., Inman, R. D., Esque, T. C., Nussear, K. E., & Fisher, R. N. ( 2013 ). Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran Deserts. Diversity and Distributions, 19 ( 7 ), 722 - 737. https://doi.org/10.1111/ddi.12022
dc.identifier.citedreferenceWright, S. ( 1943 ). Isolation by distance. Genetics, 28 ( 2 ), 114.
dc.identifier.citedreferenceZamudio, K. R., Bell, R. C., & Mason, N. A. ( 2016 ). Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proceedings of the National Academy of Sciences of the USA, 113 ( 29 ), 8041 - 8048. https://doi.org/10.1073/pnas.1602237113
dc.identifier.citedreferenceZink, R. M., Kessen, A. E., Line, T. V., & Blackwell-Rago, R. C. ( 2001 ). Comparative phylogeography of some aridland bird species. The Condor, 103 ( 1 ), 1 - 10.
dc.identifier.citedreferenceAiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. ( 2015 ). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38 ( 5 ), 541 - 545. https://doi.org/10.1111/ecog.01132
dc.identifier.citedreferenceAnderson, C. G., & Greenbaum, E. ( 2012 ). Phylogeography of northern populations of the black-tailed rattlesnake ( Crotalus molossus Baird and Girard, 1853), with the revalidation of C. ornatus Hallowell, 1854. Herpetological Monographs, 26 ( 26 ), 19 - 57. https://doi.org/10.1655/HERPMONOGRAPHS-D-11-00012.1
dc.identifier.citedreferenceBradburd, G. S., Coop, G. M., & Ralph, P. L. ( 2018 ). Inferring continuous and discrete population genetic structure across space. Genetics, 210 ( 1 ), 33 - 52. https://doi.org/10.1534/genetics.118.301333
dc.identifier.citedreferenceBryson, R. W., García-Vázquez, U. O., & Riddle, B. R. ( 2011 ). Phylogeography of Middle American gophersnakes: Mixed responses to biogeographical barriers across the Mexican Transition Zone. Journal of Biogeography, 38 ( 8 ), 1570 - 1584. https://doi.org/10.1111/j.1365-2699.2011.02508.x
dc.identifier.citedreferenceCarstens, B. C., Stoute, H. N., & Reid, N. M. ( 2009 ). An information-theoretical approach to phylogeography. Molecular Ecology, 18 ( 20 ), 4270 - 4282. https://doi.org/10.1111/j.1365-294X.2009.04327.x
dc.identifier.citedreferenceCastoe, T. A., Spencer, C. L., & Parkinson, C. L. ( 2007 ). Phylogeographic structure and historical demography of the western diamondback rattlesnake ( Crotalus atrox ): A perspective on North American desert biogeography. Molecular Phylogenetics and Evolution, 42 ( 1 ), 193 - 212. https://doi.org/10.1016/j.ympev.2006.07.002
dc.identifier.citedreferenceChamberlain, S., Ram, K., & Hart, T. ( 2016 ). spocc: Interface to species occurrence data sources. R package version 0.7.0.
dc.identifier.citedreferenceChen, X., Lemmon, A. R., Lemmon, E. M., Pyron, R. A., & Burbrink, F. T. ( 2017 ). Using phylogenomics to understand the link between biogeographic origins and regional diversification in ratsnakes. Molecular Phylogenetics and Evolution, 111, 206 - 218. https://doi.org/10.1016/j.ympev.2017.03.017
dc.identifier.citedreferenceCox, C. L., Davis Rabosky, A. R., Holmes, I. A., Reyes-Velasco, J., Roelke, C. E., Smith, E. N., - Campbell, J. A. ( 2018 ). Synopsis and taxonomic revision of three genera in the snake tribe Sonorini. Journal of Natural History, 52 ( 13-16 ), 945 - 988. https://doi.org/10.1080/00222933.2018.1449912
dc.identifier.citedreferenceDahn, H. A., Strickland, J. L., Osorio, A., Colston, T. J., & Parkinson, C. L. ( 2018 ). Hidden diversity within the depauperate genera of the snake tribe Lampropeltini (Serpentes, Colubridae). Molecular Phylogenetics and Evolution, 129, 214 - 225. https://doi.org/10.1016/j.ympev.2018.08.018
dc.identifier.citedreferenceDanecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., - Durbin, R. ( 2011 ). The variant call format and VCFtools. Bioinformatics, 27 ( 15 ), 2156 - 2158. https://doi.org/10.1093/bioinformatics/btr330
dc.identifier.citedreferenceDevitt, T. J., LaDuc, T. J., & McGuire, J. A. ( 2008 ). The Trimorphodon biscutatus (Squamata: Colubridae) species complex revisited: A multivariate statistical analysis of geographic variation. Copeia, 2008 ( 2 ), 370 - 387. https://doi.org/10.1643/CH-07-045
dc.identifier.citedreferenceEaton, D. A. R. ( 2014 ). PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30 ( 13 ), 1844 - 1849. https://doi.org/10.1093/bioinformatics/btu121
dc.identifier.citedreferenceEdgar, R. C. ( 2004 ). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 ( 5 ), 1792 - 1797. https://doi.org/10.1093/nar/gkh340
dc.identifier.citedreferenceElith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. ( 2011 ). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17 ( 1 ), 43 - 57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
dc.identifier.citedreferenceElshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. ( 2011 ). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6 ( 5 ), e19379. https://doi.org/10.1371/journal.pone.0019379
dc.identifier.citedreferenceErnst, C. H., & Ernst, E. M. ( 2003 ). Snakes of the United States and Canada. Washington DC: Smithsonian Books.
dc.identifier.citedreferenceFerrier, S., Manion, G., Elith, J., & Richardson, K. ( 2007 ). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13 ( 3 ), 252 - 264. https://doi.org/10.1111/j.1472-4642.2007.00341.x
dc.identifier.citedreferenceFitzpatrick, M. C., & Keller, S. R. ( 2015 ). Ecological genomics meets community-level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecology Letters, 18 ( 1 ), 1 - 16. https://doi.org/10.1111/ele.12376
dc.identifier.citedreferenceGraham, M. R., Hendrixson, B. E., Hamilton, C. A., & Bond, J. E. ( 2015 ). Miocene extensional tectonics explain ancient patterns of diversification among turret-building tarantulas (Aphonopelma mojave group) in the Mojave and Sonoran deserts. Journal of Biogeography, 42 ( 6 ), 1052 - 1065. https://doi.org/10.1111/jbi.12494
dc.identifier.citedreferenceHewitt, G. ( 2000 ). The genetic legacy of the quaternary ice ages. Nature, 405 ( 6789 ), 907 - 913. https://doi.org/10.1038/35016000
dc.identifier.citedreferenceHijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. ( 2005 ). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25 ( 15 ), 1965 - 1978. https://doi.org/10.1002/joc.1276
dc.identifier.citedreferenceHijmans, R. J., & van Etten, J. ( 2012 ). raster: Geographic analysis and modeling with raster data. R Package Version, 1, 9-92.
dc.identifier.citedreferenceIrwin, D. E. ( 2002 ). Phylogeographic breaks without geographic barriers to gene flow. Evolution, 56 ( 12 ), 2383 - 2394. https://doi.org/10.1111/j.0014-3820.2002.tb00164.x
dc.identifier.citedreferenceJackson, J. M., Pimsler, M. L., Oyen, K. J., Koch-Uhuad, J. B., Herndon, J. D., Strange, J. P., - Lozier, J. D. ( 2018 ). Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Molecular Ecology, 27 ( 14 ), 2926 - 2942. https://doi.org/10.1111/mec.14735
dc.identifier.citedreferenceJohnson, M. T. J., & Stinchcombe, J. R. ( 2007 ). An emerging synthesis between community ecology and evolutionary biology. Trends in Ecology and Evolution, 22 ( 5 ), 250 - 257. https://doi.org/10.1016/j.tree.2007.01.014
dc.identifier.citedreferenceKamvar, Z. N., Tabima, J. F., & Grünwald, N. J. ( 2014 ). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. https://doi.org/10.7717/peerj.281
dc.identifier.citedreferenceLaport, R. G., & Minckley, R. L. ( 2013 ). Cytogeography of Larrea tridentata at the Chihuahuan-Sonoran Desert ecotone. In G. J. Gottfried, P. F. Ffolliott, B. S. Gebow, L. G. Eskew, & L. C. Collins (Eds.), Merging science and management in a rapidly changing world: Biodiversity and management of the Madrean Archipelago III and 7th Conference on Research and Resource Management in the Southwestern Deserts, Vol. 67 (pp. 218 - 224 ); 2012 May 1-5; Tucson, AZ. Proceedings. RMRS-P-67. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
dc.identifier.citedreferenceManion, G., Lisk, M., Ferrier, S., Nieto-Lugilde, D., & Fitzpatrick, M. C. ( 2016 ). gdm: Functions for generalized dissimilarity modeling. R Package.
dc.identifier.citedreferenceMcRae, B. H. ( 2006 ). Isolation by resistance. Evolution, 60 ( 8 ), 1551 - 1561. https://doi.org/10.1554/05-321.1
dc.identifier.citedreferenceMcRae, B.H., Shah, V. B.,& Edelman, A. ( 2016 ). Circuitscape: Modeling Landscape Connectivity to Promote Conservation and Human Health. Fort Collins, CO: The Nature Conservancy. 14 pp.
dc.identifier.citedreferenceMeirmans, P. G. ( 2012 ). The trouble with isolation by distance. Molecular Ecology, 21 ( 12 ), 2839 - 2846. https://doi.org/10.1111/j.1365-294X.2012.05578.x
dc.identifier.citedreferenceMulcahy, D. G. ( 2008 ). Phylogeography and species boundaries of the western North American Nightsnake ( Hypsiglena torquata ): Revisiting the subspecies concept. Molecular Phylogenetics and Evolution, 46 ( 3 ), 1095 - 1115. https://doi.org/10.1016/j.ympev.2007.12.012
dc.identifier.citedreferenceMyers, E. A., Bryson, R. W. Jr, Hansen, R. W., Aardema, M. L., Lazcano, D., & Burbrink, F. T. ( 2019 ). Exploring Chihuahuan Desert diversification in the gray-banded kingsnake, Lampropeltis alterna (Serpentes: Colubridae). Molecular Phylogenetics and Evolution, 131, 211 - 218. https://doi.org/10.1016/j.ympev.2018.10.031
dc.identifier.citedreferenceMyers, E. A., Burgoon, J. L., Ray, J. M., Martínez-Gómez, J. E., Matías-Ferrer, N., Mulcahy, D. G., & Burbrink, F. T. ( 2017 ). Coalescent species tree inference of Coluber and Masticophis. Copeia, 105 ( 4 ), 642 - 650. https://doi.org/10.1643/CH-16-552
dc.identifier.citedreferenceMyers, E. A., Hickerson, M. J., & Burbrink, F. T. ( 2017 ). Asynchronous diversification of snakes in the North American warm deserts. Journal of Biogeography, 44 ( 2 ), 461 - 474. https://doi.org/10.1111/jbi.12873
dc.identifier.citedreferenceNei, M. ( 1972 ). Genetic distance between populations. The American Naturalist, 106 ( 949 ), 283 - 292. https://doi.org/10.1086/282771
dc.identifier.citedreferenceNosil, P. ( 2012 ). Ecoloigcal speciation. Oxford, UK: Oxford University Press.
dc.identifier.citedreferenceO’Connell, K. A., & Smith, E. N. ( 2018 ). The effect of missing data on coalescent species delimitation and a taxonomic revision of whipsnakes (Colubridae: Masticophis). Molecular Phylogenetics and Evolution, 127, 356 - 366. https://doi.org/10.1016/j.ympev.2018.03.018
dc.identifier.citedreferenceO’Connell, K. A., Streicher, J. W., Smith, E. N., & Fujita, M. K. ( 2017 ). Geographical features are the predominant driver of molecular diversification in widely distributed North American whipsnakes. Molecular Ecology, 26 ( 20 ), 5729 - 5751. https://doi.org/10.1111/mec.14295
dc.identifier.citedreferencePelletier, T. A., & Carstens, B. C. ( 2018 ). Geographical range size and latitude predict population genetic structure in a global survey. Biology Letters, 14 ( 1 ), 20170566. https://doi.org/10.1098/rsbl.2017.0566
dc.identifier.citedreferencePetkova, D., Novembre, J., & Stephens, M. ( 2015 ). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48 ( 1 ), 94 - 100. https://doi.org/10.1038/ng.3464
dc.identifier.citedreferencePfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E., & Lercher, M. J. ( 2014 ). PopGenome: An efficient Swiss army knife for population genomic analyses in R. Molecular Biology and Evolution, 31 ( 7 ), 1929 - 1936. https://doi.org/10.1093/molbev/msu136
dc.identifier.citedreferencePhillips, S. J., Anderson, R. P., & Schapire, R. E. ( 2006 ). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 ( 3-4 ), 231 - 259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.