Show simple item record

Hyporheic Interactions Increase Zinc Exposure and Effects on Hyalella azteca in Sediments under Flow‐Through Conditions

dc.contributor.authorHarrison, Anna M.
dc.contributor.authorHudson, Michelle L.
dc.contributor.authorBurton, G. Allen
dc.date.accessioned2019-11-12T16:23:37Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-11-12T16:23:37Z
dc.date.issued2019-11
dc.identifier.citationHarrison, Anna M.; Hudson, Michelle L.; Burton, G. Allen (2019). "Hyporheic Interactions Increase Zinc Exposure and Effects on Hyalella azteca in Sediments under Flow‐Through Conditions." Environmental Toxicology and Chemistry 38(11): 2447-2458.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/152028
dc.description.abstractGroundwater–surface water interactions in the hyporheic transition zone can influence contaminant exposure to benthic macroinvertebrates. In streams, hyporheic flows are subject to varying redox conditions, which influence biogeochemical cycling and metal speciation. Despite these relationships, little is known about how these interactions influence the ecological risk of contaminants. The present study investigated the effects of hyporheic flows and zinc (Zn)‐contaminated sediments on the amphipod Hyalella azteca. Hyporheic flows were manipulated in laboratory streams during 10‐d experiments. Zinc toxicity was evaluated in freshly spiked and aged sediments. Hyporheic flows altered sediment and porewater geochemistry, oxidizing the sediments and causing changes to redox‐sensitive endpoints. Amphipod survival was lowest in the Zn sediment exposures with hyporheic flows. In freshly spiked sediments, porewater Zn drove mortality, whereas in aged sediments simultaneously extracted metals (SEM) in excess of acid volatile sulfides (AVS) normalized by the fraction of organic carbon (fOC) [(SEM‐AVS)/fOC] influenced amphipod responses. The results highlight the important role of hyporheic flows in determining Zn bioavailability to benthic organisms, information that can be important in ecological risk assessments. Environ Toxicol Chem 2019;38:2447–2458. © 2019 SETAC
dc.publisherAcademic, San Diego
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHyporheic zone
dc.subject.otherEnvironmental risk assessments
dc.subject.otherMetal bioavailability
dc.subject.otherSediment toxicity
dc.subject.otherGroundwater–surface water transition zone
dc.titleHyporheic Interactions Increase Zinc Exposure and Effects on Hyalella azteca in Sediments under Flow‐Through Conditions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152028/1/etc4554.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152028/2/etc4554_am.pdf
dc.identifier.doi10.1002/etc.4554
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferenceNelson SM, Roline RA. 1999. Relationships between metals and hyporheic invertebrate community structure in a river recovering from metals contamination. Hydrobiologia 397: 211 – 226.
dc.identifier.citedreferenceHothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biometrical J 50: 346 – 363.
dc.identifier.citedreferenceHutchins CM, Teasdale PR, Lee SY, Simpson SL. 2009. The effect of sediment type and pH‐adjustment on the porewater chemistry of copper‐ and zinc‐spiked sediments. Soil Sediment Contam 18: 55 – 73.
dc.identifier.citedreferenceKeery J, Binley A, Crook N, Smith JWN. 2007. Temporal and spatial variability of groundwater‐surface water fluxes: Development and application of an analytical method using temperature time series. J Hydrol 336: 1 – 16.
dc.identifier.citedreferenceKostka JE, Luther GW. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim Cosmochim Acta 58: 1701 – 1710.
dc.identifier.citedreferenceKuznetsova A, Brockhoff PB, Christensen RHB. 2017. Package: Tests in linear mixed effects models. J Stat Softw 82: 1 – 26.
dc.identifier.citedreferenceMacDonald DD, Ingersoll CG, Berger TA. 2000. Development and evaluation of consensus‐based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39: 20 – 31.
dc.identifier.citedreferenceMathers KL, Millett J, Robertson AL, Stubbington R, Wood PJ. 2014. Faunal response to benthic and hyporheic sedimentation varies with direction of vertical hydrological exchange. Freshw Biol 59: 2278 – 2289.
dc.identifier.citedreferenceMendonca RM, Daley JM, Hudson ML, Schlekat C, Burton GA, Costello D. 2017. Metal oxides in surface sediment control nickel bioavailability to benthic macroinvertebrates. Environ Sci Technol 51: 13407 – 13416.
dc.identifier.citedreferenceMoldovan OT, Levei E, Marin C, Banciu M, Banciu HL, Pavelescu C, Brad T, Cîmpean M, Meleg I, Iepure S, Povara I. 2011. Spatial distribution patterns of the hyporheic invertebrate communities in a polluted river in Romania. Hydrobiologia 669: 63 – 82.
dc.identifier.citedreferenceMorrice JA, Valett HM, Dahm CN, Campana ME. 1997. Alluvial characteristics, groundwater‐surface water exchange and hydrological retention in headwater streams. Hydrol Process 11: 253 – 267.
dc.identifier.citedreferenceMunn NL, Meyer JL. 1988. Rapid flow through the sediments of a headwater stream in the southern Appalachians. Freshw Biol 20: 235 – 240.
dc.identifier.citedreferenceCela S, Sumner ME. 2002. Soil zinc fractions determine inhibition of nitrification. Water Air Soil Pollut 141: 91 – 104.
dc.identifier.citedreferenceOlsen DA, Townsend CR. 2003. Hyporheic community composition in a gravel‐bedstream: Influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshw Biol 48: 1363 – 1378.
dc.identifier.citedreferenceRehg KJ, Packman AI, Ren J. 2005. Effects of suspended sediment characteristics and bed sediment transport on streambed clogging. Hydrol Process 19: 413 – 427.
dc.identifier.citedreferenceRivett MO, Ellis PA, Greswell RB, Ward RS, Roche RS, Cleverly MG, Walker C, Conran D, Fitzgerald PJ, Willcox T, Dowle J. 2008. Cost‐effective mini drive‐point piezometers and multilevel samplers for monitoring the hyporheic zone. Q J Eng Geol Hydrogeol 41: 49 – 60.
dc.identifier.citedreferenceRStudio Team. 2018. RStudio: Integrated Development for R. RStudio, Boston, MA, USA. [cited 2018 September 12]. Available from: http://www.rstudio.com/
dc.identifier.citedreferenceSimpson SL, Angel BM, Jolley DF. 2004. Metal equilibration in laboratory‐contaminated (spiked) sediments used for the development of whole‐sediment toxicity tests. Chemosphere 54: 597 – 609.
dc.identifier.citedreferenceSteinman A, Rediske R, Denning R, Nemeth L, Uzarski D, Biddanda B, Luttenton M. 2003. Preliminary watershed assessment: Mona Lake Watershed. Scientific Technical Report 9. Community Foundation for Muskegon County, Muskegon, Michigan, USA.
dc.identifier.citedreferenceStookey LL. 1970. Ferrozine—A new spectrophotometric reagent for iron. Anal Chem 42: 779 – 781.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2008. Evaluating ground‐water/surface‐water transition zones in ecological risk assessment. EPA‐540‐R06‐072. Washington, DC.
dc.identifier.citedreferenceUS Environmental Protection Agency. 1996. Method 3050B: Acid digestion of sediments, sludges, and soils. Revision 2. Washington, DC.
dc.identifier.citedreferenceVuori K‐M. 1995. Direct and indirect effects of iron on river ecosystems. Ann Zool Fennici 32: 317 – 329.
dc.identifier.citedreferenceWinter TC. 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7: 28 – 45.
dc.identifier.citedreferenceZaramella M, Marion A, Packman AI. 2006. Applicability of the transient storage model to the hyporheic exchange of metals. J Contam Hydrol 84: 21 – 35.
dc.identifier.citedreferenceAllen HE, Fu G, Boothman WS, DiToro DM, Mahony JD. 1991. Determination of acid volatile sulfide and selected simultaneously extractable metals in sediment. EPA 821/R‐91/100. US Environmental Protection Agency, Washington, DC.
dc.identifier.citedreferenceBaker ME, Wiley MJ, Seelbach PW. 2003. GIS‐based models of potential groundwater loading in glaciated landscapes: Considerations and development in Lower Michigan. Report 2064. Institute for Fisheries Research, Michigan Department of Natural Resources, Ann Arbor, Michigan, USA.
dc.identifier.citedreferenceBates D, Maechler M, Bolker B, Walker S. 2015. Linear mixed‐effects models using. lme4. J Stat Softw 67: 1 – 48.
dc.identifier.citedreferenceBaxter C, Hauer FR, Woessner WW. 2003. Measuring groundwater–stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity. Trans Am Fish Soc 132: 493 – 502.
dc.identifier.citedreferenceBoulton AJ. 1993. Stream ecology and surface‐hyporheic hydrologic exchange: Implications, techniques and limitations. Aust J Mar Freshw Res 44: 553 – 564.
dc.identifier.citedreferenceBrunke M, Gonser T. 1997. The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37: 1 – 33.
dc.identifier.citedreferenceBurton GA, Nguyen LTH, Janssen C, Baudo R, McWilliam R, Bossuyt B, Beltrami M, Green A. 2005. Field validation of sediment zinc toxicity. Environ Toxicol Chem 24: 541 – 553.
dc.identifier.citedreferenceCalmano W, Hong J, Forstner U. 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol Tech 28: 223 – 235.
dc.identifier.citedreferenceChapman PM, Wang F, Janssen C, Persoone G, Allen HE. 1998. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55: 2221 – 2243.
dc.identifier.citedreferenceCooper MJ, Rediske RR, Uzarski DG, Burton TM. 2001. Sediment contamination and faunal communities in two subwatersheds of Mona Lake, Michigan. J Environ Qual 38: 1255 – 1265.
dc.identifier.citedreferenceCostello DM, Hammerschmidt CR, Burton GA. 2015. Copper sediment toxicity and partitioning during oxidation in a flow‐through flume. Environ Sci Technol 49: 6926 – 6933.
dc.identifier.citedreferenceDanner KM, Hammerschmidt CR, Costello DM, Burton GA. 2015. Copper and nickel partitioning with nanoscale goethite under variable aquatic conditions. Environ Toxicol Chem 34: 1705 – 1710.
dc.identifier.citedreferenceDavy‐Bowker J, Sweeting W, Wright N, Clarke RT, Arnott S. 2006. The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia 563: 109 – 123.
dc.identifier.citedreferenceFeris K, Ramsey P, Frazar C, Moore JN, Gannon JE, Holben WE. 2003. Differences in hyporheic‐zone microbial community structure along a heavy‐metal contamination gradient. Appl Environ Microbiol 69: 5563 – 5573.
dc.identifier.citedreferenceFeris KP, Ramsey PW, Gibbons SM, Frazar C, Rillig MC, Moore JN, Gannon JE, Holben WE. 2009. Hyporheic microbial community development is a sensitive indicator of metal contamination. Environ Sci Technol 43: 6158 – 6163.
dc.identifier.citedreferenceFranken RJM, Storey RG, Williams DD. 2001. Biological, chemical and physiucal characteristics of downwelling and upwelling zones in the hyporheic zone of a north‐temperature stream. Hydrobiologia 444: 183 – 195.
dc.identifier.citedreferenceFuller CC, Harvey JW. 2000. Reactive uptake of trace metals in the hyporheic zone of a mining‐contaminated stream, Pinal Creek, Arizona. Environ Sci Technol 34: 1150 – 1155.
dc.identifier.citedreferenceGerhardt A. 1992. Effects of subacute doses of iron (Fe) on Leptophlebia marginata (Insecta: Ephemeroptera). Freshw Biol 27: 79 – 84.
dc.identifier.citedreferenceGibert J, Plénet S, Marmonier P, Vanek V. 1995. Hydrological exchange and sediment characteristics in a riverbank: Relationship between heavy metals and invertebrate community structure. Can J Fish Aquat Sci 52: 2084 – 2097.
dc.identifier.citedreferenceGordon RP, Lautz LK, Briggs MA, McKenzie JM. 2012. Automated calculation of vertical pore‐water flux from field temperature time series using the VFLUX method and computer program. J Hydrol 420–421: 142 – 158.
dc.identifier.citedreferenceGreenberg MS, Burton GA, Rowland CD. 2002. Optimizing interpretation of in situ effects of riverine pollutants: Impact of upwelling and downwelling. Environ Toxicol Chem 21: 289 – 297.
dc.identifier.citedreferenceHarvey JW, Fuller CC. 1998. Effect of enhanced manganese oxidation in the hyporheic zone on basin‐scale geochemical mass balance. Water Resour Res 34: 623.
dc.identifier.citedreferenceHatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C. 2006. Quantifying surface water‐groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resour Res 42. DOI:10.1029/2005WR004787
dc.identifier.citedreferenceHendricks SP. 1993. Microbial ecology of the hyporheic zone: A perspective integrating hydrology and biology. J North Am Benthol Soc 12: 70 – 78.
dc.identifier.citedreferenceHendricks SP, White DS. 1991. Physicochemical patterns within a hyporheic zone of a Northern Michigan river, with comments on surface water patterns. Can J Fish Aquat Sci 48: 1645 – 1654.
dc.identifier.citedreferenceHendricks SP, White DS. 2000. Stream and groundwater influences on phosphorous biogeochemistry. In Jones JB, Mulholland PJ, eds, Streams and Groundwaters. Academic, San Diego, CA, USA, pp 221 – 235.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.