Show simple item record

Total RNA Analysis of Bacterial Community Structural and Functional Shifts Throughout Vertebrate Decomposition

dc.contributor.authorBurcham, Zachary M.
dc.contributor.authorCowick, Caitlyn A.
dc.contributor.authorBaugher, Courtney N.
dc.contributor.authorPechal, Jennifer L.
dc.contributor.authorSchmidt, Carl J.
dc.contributor.authorRosch, Jason W.
dc.contributor.authorBenbow, M. Eric
dc.contributor.authorJordan, Heather R.
dc.date.accessioned2019-11-12T16:23:53Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-11-12T16:23:53Z
dc.date.issued2019-11
dc.identifier.citationBurcham, Zachary M.; Cowick, Caitlyn A.; Baugher, Courtney N.; Pechal, Jennifer L.; Schmidt, Carl J.; Rosch, Jason W.; Benbow, M. Eric; Jordan, Heather R. (2019). "Total RNA Analysis of Bacterial Community Structural and Functional Shifts Throughout Vertebrate Decomposition." Journal of Forensic Sciences 64(6): 1707-1719.
dc.identifier.issn0022-1198
dc.identifier.issn1556-4029
dc.identifier.urihttps://hdl.handle.net/2027.42/152033
dc.description.abstractMultiple methods have been proposed to provide accurate time since death estimations, and recently, the discovery of bacterial community turnover during decomposition has shown itself to have predictable patterns that may prove useful. In this study, we demonstrate the use of metatranscriptomics from the postmortem microbiome to simultaneously obtain community structure and functional data across postmortem intervals (PMIs). We found that bacterial succession patterns reveal similar trends as detected through DNA analysis, such as increasing Clostridiaceae as decomposition occurs, strengthening the reliability of total RNA community analyses. We also provide one of the first analyses of RNA transcripts to characterize bacterial metabolic pathways during decomposition. We found distinct pathways, such as amino acid metabolism, to be strongly up‐regulated with increasing PMIs. Elucidating the metabolic activity of postmortem microbial communities provides the first steps to discovering postmortem functional biomarkers since functional redundancy across bacteria may reduce host individual microbiome variability.
dc.publisherSpringer Science and Business Media
dc.publisherWiley Periodicals, Inc.
dc.subject.othermetatranscriptomics
dc.subject.otherpostmortem microbiome
dc.subject.othernecrobiome
dc.subject.otherpostmortem interval
dc.subject.otherforensic science
dc.subject.otherdecomposition ecology
dc.titleTotal RNA Analysis of Bacterial Community Structural and Functional Shifts Throughout Vertebrate Decomposition
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152033/1/jfo14083_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152033/2/jfo14083.pdf
dc.identifier.doi10.1111/1556-4029.14083
dc.identifier.sourceJournal of Forensic Sciences
dc.identifier.citedreferenceBiddle A, Steward L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communitites. Diversity 2013; 5 ( 3 ): 627 – 40.
dc.identifier.citedreferenceBokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker‐gene amplicon sequences with QIIME 2’s q2‐feature‐classifier plugin. Microbiome 2018; 6 ( 1 ): 90 – 107.
dc.identifier.citedreferenceLozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 2007; 73 ( 5 ): 1576 – 85.
dc.identifier.citedreferenceMandal S, Van Treuren W, White RA, Eggesbo M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 2015; 26: 27663.
dc.identifier.citedreferenceBuchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12 ( 1 ): 59 – 60.
dc.identifier.citedreferenceRobinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26 ( 1 ): 139 – 40.
dc.identifier.citedreferenceMcCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA‐Seq experiments with respect to biological variation. Nucleic Acids Res 2012; 40 ( 10 ): 4288 – 97.
dc.identifier.citedreferenceLove MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol 2014; 15 ( 12 ): 550.
dc.identifier.citedreferenceKanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28 ( 1 ): 27 – 30.
dc.identifier.citedreferenceThe UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017; 45 ( D1 ): D158 – 69.
dc.identifier.citedreferencePozhitkov AE, Neme R, Domazet‐Loso T, Leroux BG, Soni S, Tautz D, et al. Tracing the dynamics of gene transcripts after organismal death. Open Biol 2017; 7 ( 1 ): 160267.
dc.identifier.citedreferenceCan I, Javan GT, Pozhitkov AE, Noble PA. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods 2014; 106: 1 – 7.
dc.identifier.citedreferenceHillmann F, Fischer RJ, Saint‐Prix F, Girbal L, Bahl H. PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 2008; 68 ( 4 ): 848 – 60.
dc.identifier.citedreferenceCarter DO, Tibbett M. Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition? Appl Soil Ecol 2008; 40 ( 3 ): 529 – 35.
dc.identifier.citedreferenceAnderson B, Meyer J, Carter DO. Dynamics of ninhydrin‐reactive nitrogen and pH in gravesoil during the extended postmortem interval. J Forensic Sci 2013; 58 ( 5 ): 1348 – 52.
dc.identifier.citedreferenceJanaway RC, Percival SL, Wilson AS. Decomposition of human remains. In: Percival SL, editor. Microbiology and aging. New York, NY: Springer Science + Business Media, LLC, 2009; 313 – 34.
dc.identifier.citedreferenceLozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005; 71 ( 12 ): 8228 – 35.
dc.identifier.citedreferenceLozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J 2011; 5 ( 2 ): 169 – 72.
dc.identifier.citedreferenceThe Human Microbiome Consortium. A framework for human microbiome research. Nature 2012; 486 ( 7402 ): 215 – 21.
dc.identifier.citedreferenceBoor KJ. Bacterial stress responses: what doesn’t kill them can make then stronger. PLoS Biol 2006; 4 ( 1 ): e23.
dc.identifier.citedreferenceCotter PD, Hill C. Surviving the acid test: responses of gram‐positive bacteria to low pH. Microbiology and molecular biology reviews. Microbiol Mol Biol Rev 2003; 67 ( 3 ): 429 – 53.
dc.identifier.citedreferenceRon EZ. Editorial: an update on the bacterial stress response. Res Microbiol 2009; 160 ( 4 ): 243 – 4.
dc.identifier.citedreferenceSchimel J, Balser TC, Wallenstein M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology 2007; 88 ( 6 ): 1386 – 94.
dc.identifier.citedreferenceCornforth DM, Foster KR. Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol 2013; 11 ( 4 ): 285 – 93.
dc.identifier.citedreferenceLaalami S, Zig L, Putzer H. Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2014; 71 ( 10 ): 1799 – 828.
dc.identifier.citedreferenceLauber CL, Metcalf JL, Keepers K, Ackermann G, Carter DO, Knight R. Vertebrate decomposition is accelerated by soil microbes. Appl Environ Microbiol 2014; 80 ( 16 ): 4920 – 9.
dc.identifier.citedreferenceBenninger LA, Carter DO, Forbes SL. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci Int 2008; 180 ( 2–3 ): 70 – 5.
dc.identifier.citedreferenceCarter DO, Yellowlees D, Tibbett M. Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl Soil Ecol 2008; 40 ( 1 ): 129 – 37.
dc.identifier.citedreferenceKunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 2010; 12 ( 1 ): 118 – 23.
dc.identifier.citedreferenceOulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, et al. Metagenomics: tools and insights for analyzing next‐generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 2015; 9: 75 – 88.
dc.identifier.citedreferenceLouca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol 2018; 2 ( 6 ): 936 – 43.
dc.identifier.citedreferenceBurcham ZM, Hood JA, Pechal JL, Krausz KL, Bose JL, Schmidt CJ, et al. Fluorescently labeled bacteria provide insight on post‐mortem microbial transmigration. Forensic Sci Int 2016; 264: 63 – 9.
dc.identifier.citedreferenceJanaway R, Percival S, Wilson A. Decomposition of human remains. In: Percival S, editor. Microbiology and aging: clinical manifestations. New York, NY: Springer Science and Business Media, 2009; 313 – 34.
dc.identifier.citedreferenceKnight B. Forensic medicine, 11 th edn. Oxford, UK: Oxford University Press, 1997.
dc.identifier.citedreferenceCarter D, Metcalf J, Bibat A, Knight R. Seasonal variation of postmortem microbial communities. Forensic Sci Med Pathol 2015; 11 ( 2 ): 202 – 7.
dc.identifier.citedreferenceCarter D, Yellowlees D, Tibbett M. Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci Int 2010; 200 ( 1–3 ): 60 – 6.
dc.identifier.citedreferenceMetcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 2016; 351 ( 6269 ): 158 – 62.
dc.identifier.citedreferencePechal J, Crippen T, Benbow M, Tarone A, Dowd S, Tomberlin J. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med 2014; 128 ( 1 ): 193 – 205.
dc.identifier.citedreferencePechal JL, Schmidt CJ, Jordan HR, Benbow ME. A large‐scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci Rep 2018; 8 ( 1 ): 5724 – 5739.
dc.identifier.citedreferenceLax S, Hampton‐Marcell J, Gibbons S, Colares G, Smith D, Eisen J, et al. Forensic analysis of the microbiome of phones and shoes. Microbiome 2015; 3: 21 – 29.
dc.identifier.citedreferenceLax S, Smith D, Hampton‐Marcell J, Owens S, Handley K, Scott N, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014; 345 ( 6200 ): 1048 – 52.
dc.identifier.citedreferenceLeake SL, Pagni M, Falquet L, Taroni F, Greub G. The salivary microbiome for differentiating individuals: proof of principle. Microbes Infect 2016; 18 ( 6 ): 399 – 405.
dc.identifier.citedreferenceLuongo JC, Barberan A, Hacker‐Cary R, Morgan EE, Miller SL, Fierer N. Microbial analyses of airborne dust collected from dormitory rooms predict the sex of occupants. Indoor Air 2017; 27 ( 2 ): 338 – 44.
dc.identifier.citedreferenceMeadow J, Altrichter A, Green J. Mobile phones carry the personal microbiome of their owners. PeerJ 2014; 2: e447.
dc.identifier.citedreferenceTridico S, Murray D, Addison J, Kirkbride K, Bunce M. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science. Investig Genet 2014; 5 ( 1 ): 16 – 30.
dc.identifier.citedreferenceHarmsen D, Karch H. 16s rDNA for diagnosing pathogens: a living tree. ASM News 2004; 70: 19 – 24.
dc.identifier.citedreferenceMetcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2013; 2: e01104.
dc.identifier.citedreferenceCobaugh K, Schaeffer S, DeBruyn J. Functional and structural succession of soil microbial communities below decomposing human cadavers. PLoS ONE 2015; 10 ( 6 ): e0130201.
dc.identifier.citedreferenceDickson G, Poulter R, Maas E, Probert P, Kieser J. Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Sci Int 2011; 209 ( 1–3 ): 1 – 10.
dc.identifier.citedreferenceHauther KA, Cobaugh KL, Jantz LM, Sparer TE, DeBruyn JM. Estimating time since death from postmortem human gut microbial communities. J Forensic Sci 2015; 60 ( 5 ): 1234 – 40.
dc.identifier.citedreferenceTolbert M, Finley SJ, Visona SD, Soni S, Osculati A, Javan GT. The thanatotranscriptome: gene expression of male reproductive organs after death. Gene 2018; 675: 191 – 6.
dc.identifier.citedreferenceJavan GT, Finley SJ, Can I, Wilkinson JE, Hanson JD, Tarone AM. Human thanatomicrobiome succession and time since death. Sci Rep 2016; 6: 29598.
dc.identifier.citedreferenceKellerman GD, Waterman NG, Scharefenberger LF. Demonstration in vitro of postmortem bacterial transmigration. Am J Clin Pathol 1976; 66 ( 5 ): 911 – 5.
dc.identifier.citedreferenceTuomisto S, Karhunen PJ, Vuento R, Aittoniemi J, Pessi T. Evaluation of postmortem bacterial migration using culturing and real‐time quantitative PCR. J Forensic Sci 2013; 58 ( 4 ): 910 – 6.
dc.identifier.citedreferenceMelvin JR Jr, Cronholm LS, Simson LR Jr, Isaacs AM. Bacterial transmigration as an indicator of time of death. J Forensic Sci 1984; 29 ( 2 ): 412 – 7.
dc.identifier.citedreferenceHyde ER, Metcalf JL, Bucheli SR, Lynne AM, Knight R. Microbial communities associated with decomposing corpses. In: Carter DO, Tomberlin JK, Benbow ME, Metcalf JL, editors. Forensic microbiology. Hoboken, NJ: Wiley, 2017; 245 – 73.
dc.identifier.citedreferenceBurcham ZM, Pechal JL, Schmidt CJ, Bose JL, Rosch JW, Benbow ME, et al. Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front Microbiol 2019; 10. https://doi.org/10.3389/fmich.2019.00745.
dc.identifier.citedreferenceLangenheder S, Lindstrom ES, Tranvik LJ. Structure and function of bacterial communities emerging from different sources under identical conditions. Appl Environ Microbiol 2006; 72 ( 1 ): 212 – 20.
dc.identifier.citedreferenceWilliamson H, Phillips R, Sarfo S, Wansbrough‐Jones M, Small P. Genetic diversity of PCR‐positive, culture‐negative and culture‐positive Mycobacterium ulcerans isolated from Buruli ulcer patients in Ghana. PLoS ONE 2014; 9 ( 2 ): e88007.
dc.identifier.citedreferenceTakamizawa A, Miyata S, Matsushita O, Kaji M, Taniguchi Y, Tamai E, et al. High‐level expression of clostridial sialidase using a ferredoxin gene promoter‐based plasmid. Protein Expr Purif 2004; 36 ( 1 ): 70 – 5.
dc.identifier.citedreferenceKrueger F. TrimGalore: a wrapper around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. 2015. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed April 25, 2019).
dc.identifier.citedreferenceBolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30 ( 15 ): 2114 – 20.
dc.identifier.citedreferenceWestreich ST, Treiber ML, Mills DA, Korf I, Lemay DG. SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinform 2018; 19 ( 1 ): 175.
dc.identifier.citedreferenceZhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate illumina paired‐end reAd mergeR. Bioinformatics 2014; 30 ( 5 ): 614 – 20.
dc.identifier.citedreferenceKopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012; 28 ( 24 ): 3211 – 7.
dc.identifier.citedreferenceQuast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools. Nucleic Acids Res 2013; 41 ( Database issue ): D590 – 6.
dc.identifier.citedreferenceCaporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high‐throughput community sequencing data. Nat Methods 2010; 7 ( 5 ): 335 – 6.
dc.identifier.citedreferenceCallahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high‐resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13 ( 7 ): 581 – 3.
dc.identifier.citedreferenceKazutaka K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30 ( 4 ): 772 – 80.
dc.identifier.citedreferenceLane DJ. 16s/23s rrna sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York, NY: John Wiley and Sons, 1991; 115 – 75.
dc.identifier.citedreferencePrice MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum‐likelihood trees for large alignments. PLoS ONE 2010; 5 ( 3 ): e9490.
dc.identifier.citedreferenceYilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All‐species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42 ( Database issue ): D643 – 8.
dc.identifier.citedreferenceRognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016; 4: e2584.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.