Show simple item record

Toward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model

dc.contributor.authorNelson, Arin D.
dc.contributor.authorArbic, Brian K.
dc.contributor.authorZaron, Edward D.
dc.contributor.authorSavage, Anna C.
dc.contributor.authorRichman, James G.
dc.contributor.authorBuijsman, Maarten C.
dc.contributor.authorShriver, Jay F.
dc.date.accessioned2019-11-12T16:24:00Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-11-12T16:24:00Z
dc.date.issued2019-09
dc.identifier.citationNelson, Arin D.; Arbic, Brian K.; Zaron, Edward D.; Savage, Anna C.; Richman, James G.; Buijsman, Maarten C.; Shriver, Jay F. (2019). "Toward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model." Journal of Geophysical Research: Oceans 124(9): 6632-6642.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/152034
dc.description.abstractSemidiurnal baroclinic tide sea surface height (SSH) variance and semidiurnal nonstationary variance fraction (SNVF) are compared between a hydrodynamic model and altimetry for the low‐ to middle‐latitude global ocean. Tidal frequencies are aliased by ∼10‐day altimeter sampling, which makes it impossible to unambiguously identify nonstationary tidal signals from the observations. In order to better understand altimeter sampling artifacts, the model was analyzed using its native hourly outputs and by subsampling it in the same manner as altimeters. Different estimates of the semidiurnal nonstationary and total SSH variance are obtained with the model depending on whether they are identified in the frequency domain or wave number domain and depending on the temporal sampling of the model output. Five sources of ambiguity in the interpretation of the altimetry are identified and briefly discussed. When the model and altimetry are analyzed in the same manner, they display qualitatively similar spatial patterns of semidiurnal baroclinic tides. The SNVF typically correlates above 80% at all latitudes between the different analysis methods and above 60% between the model and altimetry. The choice of analysis methodology was found to have a profound effect on estimates of the semidiurnal baroclinic SSH variance with the wave number domain methodology underestimating the semidiurnal nonstationary and total SSH variances by 68% and 66%, respectively. These results produce a SNVF estimate from altimetry that is biased low by a factor of 0.92. This bias is primarily a consequence of the ambiguity in the separation of tidal and mesoscale signals in the wave number domain.Key PointsHydrodynamic models incorporating mesoscale dynamics and tides are beginning to resolve stationary and nonstationary baroclinic tidesThe ratio of nonstationary to total semidiurnal variance computed from altimetry and HyCOM simulations agrees at low and middle latitudesComparisons of analysis methodologies show that total and nonstationary semidiurnal variances are underestimated in altimetry on average
dc.publisherGODAE OceanView
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHyCOM
dc.subject.otherinternal tide
dc.subject.othernonstationary tide
dc.subject.otheraltimetry
dc.subject.othermodel‐data comparison
dc.subject.otherSWOT
dc.titleToward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152034/1/jgrc23624_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152034/2/jgrc23624.pdf
dc.identifier.doi10.1029/2018JC014737
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRocha, C. B., Gille, S. T., Chereskin, T. K., & Menemenlis, D. ( 2016 ). Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43, 304 – 311. https://doi.org/10.1002/2016GL071349
dc.identifier.citedreferenceDunphy, M., Ponte, A. L., Klein, P., & Le Gentil, S. ( 2017 ). Low‐mode internal tide propagation in a turbulent eddy field. Journal of Physical Oceanography, 47, 649 – 665. https://doi.org/10.1175/JPO-D-16-0099.1
dc.identifier.citedreferenceElipot, S., Lumpkin, R., Perez, R. C., Lilly, J. M., Early, J. J., & Sykulski, A. M. ( 2016 ). A global surface drifter data set at hourly resolution. Journal of Geophysical Research: Oceans, 65, 29 – 50. https://doi.org/10.1002/2016JC011716
dc.identifier.citedreferenceFu, L.‐L., Alsdorf, D., Morrow, R., Rodrigues, E., & Mognard, N. ( 2012 ). SWOT: The surface water and ocean topography mission—Wide‐swath altimetric measurement of water elevation on Earth. JPL Publication, 12 ( 5 ), 228p. Retrieved from http://swot.jpl.nasa.gov/files/SWOT_MSD_final-3-26-12.pdf
dc.identifier.citedreferenceKelly, S. M., & Lermusiaux, P. F. J. ( 2016 ). Internal‐tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front. Journal of Geophysical Research: Oceans, 121, 6271 – 6294. https://doi.org/10.1002/2016JC011639
dc.identifier.citedreferenceKelly, S. M., Lermusiaux, P. F. J., Duda, T. F., & Haley, P. J. ( 2016 ). A coupled‐mode shallow‐water model for tidal analysis: Internal tide reflection and refraction by the Gulf Stream. Journal of Physical Oceanography, 46, 3661 – 3679. https://doi.org/10.1175/JPO-D-16-0018.1
dc.identifier.citedreferenceKelly, S. M., Nash, J. D., & Kunze, E. ( 2010 ). Internal‐tide energy over topography. Journal of Geophysical Research, 115, C06014. https://doi.org/10.1029/2009JC005618
dc.identifier.citedreferenceKlymak, J. M., Simmons, H. L., Braznikov, D., Kelly, S., MacKinnon, J. A., Alford, M. H., Pinkel, R., & Nash, J. D. ( 2016 ). Reflection of linear internal tides from realistic topography: The Tasman continental slope. Journal of Physical Oceanography, 46, 3321 – 3337. https://doi.org/10.1175/JPO-D-16-0061.1
dc.identifier.citedreferenceLuecke, C. A., Arbic, B. K., Bassette, S. L., Richman, J. G., Shriver, J. F., Alford, M. H., Smedstad, O. M., Timko, P. G., Trossman, D. S., & Wallcraft, A. J. ( 2017 ). The global mesoscale eddy available potential energy field in models and observations. Journal of Geophysical Research: Oceans, 122, 9126 – 9143. https://doi.org/10.1002/2017JC013136
dc.identifier.citedreferenceMadec, G. ( 2008 ). NEMO ocean engine. In Note du Pôle de modélisation, Institut Pierre‐Simon Laplace (IPSL), France. https://doi.org/10.5281/zenodo.3248739
dc.identifier.citedreferenceMüller, M., Cherniawsky, J. Y., Foreman, M. G. G., & von Storch, J.‐S. ( 2012 ). Global M 2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophysical Research Letters, 39, L19607. https://doi.org/10.1029/2012GL053320
dc.identifier.citedreferenceNgodok, H. E., Souopgui, I., Wallcraft, A. J., Richman, J. G., & Shriver, J. F. ( 2016 ). On improving the accuracy of the M 2 barotropic tides embedded in a high‐resolution global ocean circulation model. Ocean Modelling, 97, 16 – 26. https://doi.org/10.1016/j.ocemod.2015.10.011
dc.identifier.citedreferencePujol, M.‐I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., & Picot, N. ( 2016 ). DUACS DT2014: The new multi‐mission altimeter data set reprocessed over 20 years. Ocean Science, 12 ( 5 ), 1067 – 1090. https://doi.org/10.5194/os-12-1067-2016
dc.identifier.citedreferenceRay, R. D. ( 1998 ). Spectral analysis of highly aliased sea‐level signals. Journal of Geophysical Research, 103 ( C11 ), 24,991 – 25,003. https://doi.org/10.1029/98JC02545
dc.identifier.citedreferenceRay, R. D., & Mitchum, G. T. ( 1996 ). Surface manifestation of internal tides generated near Hawaii. Geophysical Research Letters, 23 ( 16 ), 2101 – 2104. https://doi.org/10.1029/96GL02050
dc.identifier.citedreferenceRay, R. D., & Mitchum, G. T. ( 1997 ). Surface manifestation of internal tides in the deep ocean: Observations from altimetry and tide gauges. Progress in Oceanography, 40, 135 – 162. https://doi.org/10.1016/S0079-6611(97)00025-6
dc.identifier.citedreferenceRay, R. D., & Zaron, E. D. ( 2011 ). Non‐stationary internal tides observed with satellite altimetry. Geophysical Research Letters, 38, L17609. https://doi.org/10.1029/2011GL048617
dc.identifier.citedreferenceRay, R. D., & Zaron, E. D. ( 2016 ). M2 internal tides and their observed wavenumber spectra from satellite altimetry. Journal of Physical Oceanography, 46, 3 – 22. https://doi.org/10.1175/JPO-D-15-0065.1
dc.identifier.citedreferenceRichman, J. G., Arbic, B. K., Shriver, J. F., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. Journal of Geophysical Research, 117, C12012. https://doi.org/10.1029/2012JC008364
dc.identifier.citedreferenceRocha, C. B., Chereskin, T. K., Gille, S. T., & Menemenlis, D. ( 2016 ). Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography, 46, 601 – 620. https://doi.org/10.1175/JPO-D-15-0087.1
dc.identifier.citedreferenceSavage, A. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H., Buijsman, M. C., Farrar, J. T., Sharma, H., Voet, G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. Journal of Geophysical Research: Oceans, 122, 2519 – 2538. https://doi.org/10.1002/2016JC012331
dc.identifier.citedreferenceShriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J., Wallcraft, A. J., & Timko, P. G. ( 2012 ). An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model. Journal of Geophysical Research, 117, C10024. https://doi.org/10.1029/2012JC008170
dc.identifier.citedreferenceThoppil, P. G., Richman, J. G., & Hogan, P. J. ( 2011 ). Energetics of a global ocean circulation model compared to observations. Geophysical Research Letters, 38, L15607. https://doi.org/10.1029/2011GL048347
dc.identifier.citedreferenceTimko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic. Journal of Geophysical Research, 117, C08014. https://doi.org/10.1029/2011JC007617
dc.identifier.citedreferenceTimko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2013 ). Skill testing a three‐dimensional global tide model to historical current meter records. Journal of Geophysical Research: Oceans, 118, 6914 – 6933. https://doi.org/10.1002/2013JC009071
dc.identifier.citedreferenceWaterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St. Laurent, L. C., Sun, O. M., Pinkel, R., Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S., Naveira Garabato, A. C., Sanford, T. B., & Lee, C. M. ( 2014 ). Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. Journal of Physical Oceanography, 44 ( 7 ), 1854 – 1872. https://doi.org/10.1175/JPO-D-13-0104.1
dc.identifier.citedreferenceZaron, E. D. ( 2015 ). Non‐stationary internal tides inferred from dual‐satellite altimetry. Journal of Physical Oceanography, 45 ( 9 ), 2239 – 2246. https://doi.org/10.1175/JPO-D-15-0020.1
dc.identifier.citedreferenceZaron, E. D. ( 2017 ). Mapping the nonstationary internal tide with satellite altimetry. Journal of Geophysical Research: Oceans, 122, 539 – 554. https://doi.org/10.1002/2016JC012487
dc.identifier.citedreferenceZhao, Z., Alford, M. H., Girton, J. B., Rainville, L., & Simmons, H. L. ( 2016 ). Global observations of open‐ocean mode‐1 M 2 internal tides. Journal of Physical Oceanography, 46, 1657 – 1684. https://doi.org/10.1029/2018JC014475
dc.identifier.citedreferenceZhou, X.‐H., Wang, D.‐P., & Chen, D. ( 2015 ). Validating satellite altimeter measurements of internal tides with long‐term TAO/TRITON buoy observations at 2° S–156° E. Geophysical Research Letters, 42, 4040 – 4046. https://doi.org/10.1002/2015GL063669
dc.identifier.citedreferenceAnsong, J. K., Arbic, B. K., Alford, M. H., Buijsman, M. C., Shriver, J. F., Zhao, Z., Richman, J. G., Simmons, H. L., Timko, P. G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. Journal of Geophysical Research: Oceans, 122, 1882 – 1900. https://doi.org/10.1002/2016JC012184
dc.identifier.citedreferenceAnsong, J. K., Arbic, B. K., Buijsman, M. C., Richman, J. G., Shriver, J. F., & Wallcraft, A. J. ( 2015 ). Indirect evidence for substantial damping of low‐mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120, 6057 – 6071. https://doi.org/10.1002/2015JC010998
dc.identifier.citedreferenceArbic, B., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A., Menemenlis, D., Metzger, E., Müller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J., Zamudio, L., & Zhao, Z. ( 2018 ). A primer on global internal tide and internal gravity wave continuum modeling in HyCOM and MITgcm. In E. Chassignet, A. Pascual, J. Tintore, & J. Verron (Eds.), New frontiers in operational oceanography (pp. 307 – 391 ). Tallahassee, FL: GODAE OceanView. https://doi.org/10.17125/gov2018.ch13
dc.identifier.citedreferenceArbic, B. K., Richman, J. G., Timko, P. G., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25 ( 2 ), 20 – 29. https://doi.org/10.5670/oceanog.2012.38
dc.identifier.citedreferenceArbic, B. K., Wallcraft, A. J., & Metzger, E. J. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32, 175 – 187. https://doi.org/10.1016/j.ocemod.2010.01.007
dc.identifier.citedreferenceBenada, J. R. ( 1997 ). PO.DAAC Merged GDR (TOPEX/POSEIDON) Generation B User’s Handbook. Retrieved from ftp://podaac.jpl.nasa.gov/allData/topex/L2/mgdrb/docs/uhmgdrb/html/usrtoc.htm
dc.identifier.citedreferenceBuijsman, M. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Semidiurnal internal tide incoherence in the Equatorial Pacific. Journal of Geophysical Research: Oceans, 122, 5286 – 5305. https://doi.org/10.1002/2016JC012590
dc.identifier.citedreferenceColosi, J. A., & Munk, W. ( 2006 ). Tales of the venerable Honolulu tide gauge. Journal of Physical Oceanography, 36 ( 6 ), 967 – 996. https://doi.org/10.1175/JPO2876.1
dc.identifier.citedreferenceDuda, T. F., Collis, J. M., Lin, Y.‐T., Newhall, A. E., Lynch, J. F., & DeFerrari, H. A. ( 2012 ). Horizontal coherence of low‐frequency fixed‐path sound in a continental shelf region with internal‐wave activity. The Journal of the Acoustical Society of America, 131 ( 2 ), 1782 – 1797. https://doi.org/10.1121/1.3666003
dc.identifier.citedreferenceDunphy, M., & Lamb, K. G. ( 2014 ). Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. Journal of Geophysical Research: Oceans, 119, 523 – 536. https://doi.org/10.1002/2013JC009293
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.