Show simple item record

Plasmonic Nanoparticles with Supramolecular Recognition

dc.contributor.authorMosquera, Jesús
dc.contributor.authorZhao, Yuan
dc.contributor.authorJang, Hee‐jeong
dc.contributor.authorXie, Nuli
dc.contributor.authorXu, Chuanlai
dc.contributor.authorKotov, Nicholas A.
dc.contributor.authorLiz‐marzán, Luis M.
dc.date.accessioned2020-01-13T15:02:32Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:02:32Z
dc.date.issued2020-01
dc.identifier.citationMosquera, Jesús ; Zhao, Yuan; Jang, Hee‐jeong ; Xie, Nuli; Xu, Chuanlai; Kotov, Nicholas A.; Liz‐marzán, Luis M. (2020). "Plasmonic Nanoparticles with Supramolecular Recognition." Advanced Functional Materials 30(2): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/152484
dc.description.abstractEven after more than two decades of intense studies, the research on selfâ assembly processes involving supramolecular interactions between nanoparticles (NPs) is continuously expanding. Plasmonic NPs have attracted particular attention due to strong optical, electrical, biological, and catalytic effects they are accompanied with. Surface plasmon resonance characteristics of plasmonic NPs and their assemblies enable fineâ tuning of these effects with unprecedented dynamic range. In turn, the uniquely high polarizability of plasmonic nanostructures and related optical effects exemplified by surfaceâ enhanced Raman scattering and redâ blue color changes give rise to their application to biosensing. Since supramolecular interactions are ubiquitous in nature, scientists have found a spectrum of biomimetic properties of individual and assembled NPs that can be regulated by the layer of surface ligands coating all NPs. This paradigm has given rise to multiple studies from the design of molecular containers and enzymeâ like catalysts to chiroplasmonic assemblies. Computational and theoretical advances in plasmonic effects for geometrically complex structures have made possible the nanoscale engineering of NPs, assemblies, and supramolecular complexes with biomolecules. It is anticipated that further studies in this area will be expanded toward chiral catalysis, environmental monitoring, disease diagnosis, and therapy.Supramolecular interactions are ubiquitous in nature and have inspired scientists to design nanostructures with biomimetic properties, regulated by surfaceâ coating ligands. This paradigm has given rise to multiple studies, from the design of molecular containers and enzymeâ like catalysts to chiroplasmonic assemblies. Further studies are expected toward chiral catalysis, environmental monitoring, disease diagnosis, and therapy.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersupramolecular ligands
dc.subject.otherbimolecular ligands
dc.subject.otherchiral plasmonics
dc.subject.otherplasmonic nanoparticles
dc.titlePlasmonic Nanoparticles with Supramolecular Recognition
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152484/1/adfm201902082.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152484/2/adfm201902082_am.pdf
dc.identifier.doi10.1002/adfm.201902082
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceY. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, N. A. Kotov, Nano Lett. 2014, 14, 3908.
dc.identifier.citedreferenceY.â Y. Kim, Y. Bang, A.â H. Lee, Y.â K. Song, ACS Nano 2019, 13, 1183.
dc.identifier.citedreferenceO. G. Hayes, J. R. McMillan, B. Lee, C. A. Mirkin, J. Am. Chem. Soc. 2018, 140, 9269.
dc.identifier.citedreferenceF. Gao, L. Liu, G. Cui, L. Xu, X. Wu, H. Kuang, C. Xu, Nanoscale 2016, 9, 223.
dc.identifier.citedreferenceA. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, C. Xu, Nanoscale 2017, 9, 3865.
dc.identifier.citedreferenceY. Zhao, Y. Yang, J. Zhao, P. Weng, Q. Pang, Q. Song, Adv. Mater. 2016, 28, 4877.
dc.identifier.citedreferenceJ.â S. Lee, M. S. Han, C. A. Mirkin, Angew. Chem., Int. Ed. Engl. 2007, 46, 4093.
dc.identifier.citedreferenceD. Yang, X. Liu, Y. Zhou, L. Luo, J. Zhang, A. Huang, Q. Mao, X. Chen, L. Tang, Anal. Methods 2017, 9, 1976.
dc.identifier.citedreferenceR. Gao, L. Xu, C. Hao, C. Xu, H. Kuang, Angew. Chem., Int. Ed. Engl. 2019, 58, 3913.
dc.identifier.citedreferenceX. Wu, C. Hao, J. Kumar, H. Kuang, N. A. Kotov, L. M. Lizâ Marzán, C. Xu, Chem. Soc. Rev. 2018, 47, 4677.
dc.identifier.citedreferenceC. Hao, L. Xu, W. Ma, X. Wu, L. Wang, H. Kuang, C. Xu, Adv. Funct. Mater. 2015, 25, 5816.
dc.identifier.citedreferenceX. Wu, L. Xu, W. Ma, L. Liu, H. Kuang, N. A. Kotov, C. Xu, Adv. Mater. 2016, 28, 5907.
dc.identifier.citedreferenceM. Sun, A. Qu, C. Hao, X. Wu, L. Xu, C. Xu, H. Kuang, Adv. Mater. 2018, 30, 1804241.
dc.identifier.citedreferenceL. Xu, Y. Gao, H. Kuang, L. M. Lizâ Marzán, C. Xu, Angew. Chem., Int. Ed. Engl. 2018, 57, 10544.
dc.identifier.citedreferenceS. Zhao, W. Ma, L. Xu, X. Wu, H. Kuang, L. Wang, C. Xu, Biosens. Bioelectron. 2015, 68, 593.
dc.identifier.citedreferenceL. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, C. Xu, Adv. Mater. 2015, 27, 1706.
dc.identifier.citedreferenceN. A. Kotov, EPL (Europhysics Letters) 2017, 119, 66008.
dc.identifier.citedreferenceS. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 2015, 14, 567.
dc.identifier.citedreferenceM.â C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
dc.identifier.citedreferenceW. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov, Chem. Rev. 2017, 117, 8041.
dc.identifier.citedreferenceS. Dussi, M. Dijkstra, Nat. Commun. 2016, 7, 11175.
dc.identifier.citedreferenceJ. Yeom, U. S. Santos, M. Chekini, M. Cha, A. F. de Moura, N. A. Kotov, Science 2018, 359, 309.
dc.identifier.citedreferenceN. S. Abadeer, C. J. Murphy, J. Phys. Chem. C 2016, 120, 4691.
dc.identifier.citedreferenceF. Charbgoo, M. Nejabat, K. Abnous, F. Soltani, S. M. Taghdisi, M. Alibolandi, W. Thomas Shier, T. W. J. Steele, M. Ramezani, J. Controlled Release 2018, 272, 39.
dc.identifier.citedreferenceS. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, W. C. W. Chan, Nat. Rev. Mater. 2016, 1, 16014.
dc.identifier.citedreferenceC. J. Cheng, G. T. Tietjen, J. K. Saucierâ Sawyer, W. M. Saltzman, Nat. Rev. Drug Discovery 2015, 14, 239.
dc.identifier.citedreferenceW. C. W. Chan, Acc. Chem. Res. 2017, 50, 627.
dc.identifier.citedreferenceV. Myroshnychenko, J. Rodríguezâ Fernández, I. Pastorizaâ Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizâ Marzán, F. J. G. de Abajo, Chem. Soc. Rev. 2008, 37, 1792.
dc.identifier.citedreferenceA. Furube, S. Hashimoto, NPG Asia Mater. 2017, 9, e454.
dc.identifier.citedreferenceD. J. de Aberasturi, A. B. Serranoâ Montes, L. M. Lizâ Marzán, Adv. Opt. Mater. 2015, 3, 602.
dc.identifier.citedreferenceM. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia, Chem. Rev. 2011, 111, 3669.
dc.identifier.citedreferenceE. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat, M. H. Fonticelli, G. Benítez, A. A. Rubert, R. C. Salvarezza, Acc. Chem. Res. 2012, 45, 1183.
dc.identifier.citedreferenceP. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, Adv. Drug Delivery Rev. 2008, 60, 1307.
dc.identifier.citedreferenceC. L. Nehl, J. H. Hafner, J. Mater. Chem. 2008, 18, 2415.
dc.identifier.citedreferenceM. Grzelczak, J. Pérezâ Juste, P. Mulvaney, L. M. Lizâ Marzán, Chem. Soc. Rev. 2008, 37, 1783.
dc.identifier.citedreferenceJ. Reguera, J. Langer, D. J. de Aberasturi, L. M. Lizâ Marzán, Chem. Soc. Rev. 2017, 46, 3866.
dc.identifier.citedreferenceJ.â Y. Kim, M.â G. Han, M.â B. Lien, S. Magonov, Y. Zhu, H. George, T. B. Norris, N. A. Kotov, Sci. Adv. 2018, 4, e1700682.
dc.identifier.citedreferenceS. Schlücker, Angew. Chem., Int. Ed. 2014, 53, 4756.
dc.identifier.citedreferenceX. Wang, M. Li, L. Meng, K. Lin, J. Feng, T. Huang, Z. Yang, B. Ren, ACS Nano 2014, 8, 528.
dc.identifier.citedreferenceH. Vanrompay, E. Bladt, W. Albrecht, A. Béché, M. Zakhozheva, A. Sánchezâ Iglesias, L. M. Lizâ Marzán, S. Bals, Nanoscale 2018, 10, 22792.
dc.identifier.citedreferenceH. Petrova, J. P. Juste, I. Pastorizaâ Santos, G. V. Hartland, L. M. Lizâ Marzán, P. Mulvaney, Phys. Chem. Chem. Phys. 2006, 8, 814.
dc.identifier.citedreferenceJ. Mosquera, I. García, M. Henriksenâ Lacey, G. Gonzálezâ Rubio, L. M. Lizâ Marzán, Chem. Mater. 2019, 31, 57.
dc.identifier.citedreferenceJ.â M. Lehn, Angew. Chem., Int. Ed. Engl. 1990, 29, 1304.
dc.identifier.citedreferenceE. Pazos, J. Mosquera, M. E. Vázquez, J. L. Mascareñas, ChemBioChem 2011, 12, 1958.
dc.identifier.citedreferenceV. L. Schramm, Chem. Rev. 2006, 106, 3029.
dc.identifier.citedreferenceM. M. Conn, J. Rebek, Chem. Rev. 1997, 97, 1647.
dc.identifier.citedreferenceD. B. Amabilino, D. K. Smith, J. W. Steed, Chem. Soc. Rev. 2017, 46, 2404.
dc.identifier.citedreferenceJ. Y. Nehete, R. S. Bhambar, M. R. Narkhede, S. R. Gawali, Pharmacogn. Rev. 2013, 7, 107.
dc.identifier.citedreferenceA. M. Scott, J. D. Wolchok, L. J. Old, Nat. Rev. Cancer 2012, 12, 278.
dc.identifier.citedreferenceS. Sharma, H. Byrne, R. J. O’Kennedy, Essays Biochem. 2016, 60, 9.
dc.identifier.citedreferenceP. Chames, M. Van Regenmortel, E. Weiss, D. Baty, Br. J. Pharmacol. 2009, 157, 220.
dc.identifier.citedreferenceM. R. Dunn, R. M. Jimenez, J. C. Chaput, Nat. Rev. Chem. 2017, 1, 0076.
dc.identifier.citedreferenceP. Ballester, M. Fujita, J. Rebek, Chem. Soc. Rev. 2014, 44, 392.
dc.identifier.citedreferenceN. A. Kotov, Science 2010, 330, 188.
dc.identifier.citedreferenceJ. Song, L. Cheng, A. Liu, J. Yin, M. Kuang, H. Duan, J. Am. Chem. Soc. 2011, 133, 10760.
dc.identifier.citedreferenceE. R. Zubarev, J. Xu, A. Sayyad, J. D. Gibson, J. Am. Chem. Soc. 2006, 128, 15098.
dc.identifier.citedreferenceP. Thoniyot, M. J. Tan, A. A. Karim, D. J. Young, X. J. Loh, Adv. Sci. 2015, 2, 1400010.
dc.identifier.citedreferenceH.â E. Lee, H.â Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, K. T. Nam, Nature 2018, 556, 360.
dc.identifier.citedreferenceR. Schreiber, N. Luong, Z. Fan, A. Kuzyk, P. C. Nickels, T. Zhang, D. M. Smith, B. Yurke, W. Kuang, A. O. Govorov, T. Liedl, Nat. Commun. 2013, 4, 2948.
dc.identifier.citedreferenceZ. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237.
dc.identifier.citedreferenceW. Feng, J.â Y. Kim, X. Wang, H. A. Calcaterra, Z. Qu, L. Meshi, N. A. Kotov, Sci. Adv. 2017, 3, e1601159.
dc.identifier.citedreferenceJ. Zhao, M. H. Stenzel, Polym. Chem. 2018, 9, 259.
dc.identifier.citedreferenceD. Dehaini, R. H. Fang, L. Zhang, Bioeng. Transl. Med. 2016, 1, 30.
dc.identifier.citedreferenceA. J. Mastroianni, S. A. Claridge, A. P. Alivisatos, J. Am. Chem. Soc. 2009, 131, 8455.
dc.identifier.citedreferenceS. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio, O. A. Scherman, Chem. Rev. 2015, 115, 12320.
dc.identifier.citedreferenceN. Hüsken, R. W. Taylor, D. Zigah, J.â C. Taveau, O. Lambert, O. A. Scherman, J. J. Baumberg, A. Kuhn, Nano Lett. 2013, 13, 6016.
dc.identifier.citedreferenceC. Tao, Q. An, W. Zhu, H. Yang, W. Li, C. Lin, D. Xu, G. Li, Chem. Commun. 2011, 47, 9867.
dc.identifier.citedreferenceS. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, S. Mahajan, Nano Lett. 2012, 12, 5924.
dc.identifier.citedreferenceN. H. Kim, W. Hwang, K. Baek, M. R. Rohman, J. Kim, H. W. Kim, J. Mun, S. Y. Lee, G. Yun, J. Murray, J. W. Ha, J. Rho, M. Moskovits, K. Kim, J. Am. Chem. Soc. 2018, 140, 4705.
dc.identifier.citedreferenceR. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, O. A. Scherman, Nano Lett. 2013, 13, 5985.
dc.identifier.citedreferenceC. Kim, S. S. Agasti, Z. Zhu, L. Isaacs, V. M. Rotello, Nat. Chem. 2010, 2, 962.
dc.identifier.citedreferenceG. Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T. Kim, Y.â C. Yeh, B. Yan, S. Hou, V. M. Rotello, Nat. Chem. 2015, 7, 597.
dc.identifier.citedreferenceJ. Mosquera, I. García, L. M. Lizâ Marzán, Acc. Chem. Res. 2018, 51, 2305.
dc.identifier.citedreferenceY. Han, X. Yang, Y. Liu, Q. Ai, S. Liu, C. Sun, F. Liang, Sci. Rep. 2016, 6, 22239.
dc.identifier.citedreferenceG. Crini, Chem. Rev. 2014, 114, 10940.
dc.identifier.citedreferenceE. M. M. Del Valle, Process Biochem. 2004, 39, 1033.
dc.identifier.citedreferenceD. Wang, W. Zhao, Q. Wei, C. Zhao, Y. Zheng, ChemPhotoChem 2018, 2, 403.
dc.identifier.citedreferenceJ. Wu, Y. Xu, D. Li, X. Ma, H. Tian, Chem. Commun. 2017, 53, 4577.
dc.identifier.citedreferenceL. Peng, M. You, C. Wu, D. Han, I. à çsoy, T. Chen, Z. Chen, W. Tan, ACS Nano 2014, 8, 2555.
dc.identifier.citedreferenceL. Stricker, E.â C. Fritz, M. Peterlechner, N. L. Doltsinis, B. J. Ravoo, J. Am. Chem. Soc. 2016, 138, 4547.
dc.identifier.citedreferenceM. Yamashina, M. Akita, T. Hasegawa, S. Hayashi, M. Yoshizawa, Sci. Adv. 2017, 3, e1701126.
dc.identifier.citedreferenceJ. Mosquera, B. Szyszko, S. K. Y. Ho, J. R. Nitschke, Nat. Commun. 2017, 8, 14882.
dc.identifier.citedreferenceE. G. Percástegui, J. Mosquera, T. K. Ronson, A. J. Plajer, M. Kieffer, J. R. Nitschke, Chem. Sci. 2019, 10, 2006.
dc.identifier.citedreferenceD. A. Roberts, B. S. Pilgrim, J. R. Nitschke, Chem. Soc. Rev. 2018, 47, 626.
dc.identifier.citedreferenceJ. Rodríguez, J. Mosquera, J. R. Couceiro, J. R. Nitschke, M. E. Vázquez, J. L. Mascareñas, J. Am. Chem. Soc. 2017, 139, 55.
dc.identifier.citedreferenceJ. Mosquera, M. Henriksenâ Lacey, I. García, M. Martínezâ Calvo, J. Rodríguez, J. L. Mascareñas, L. M. Lizâ Marzán, J. Am. Chem. Soc. 2018, 140, 4469.
dc.identifier.citedreferenceH. Zhao, S. Sen, T. Udayabhaskararao, M. Sawczyk, K. KucË anda, D. Manna, P. K. Kundu, J.â W. Lee, P. Král, R. Klajn, Nat. Nanotechnol. 2016, 11, 82.
dc.identifier.citedreferenceY. Wang, O. Zeiri, M. Raula, B. Le Ouay, F. Stellacci, I. A. Weinstock, Nat. Nanotechnol. 2017, 12, 170.
dc.identifier.citedreferenceL. H. Tan, Y. Yue, N. S. R. Satyavolu, A. S. Ali, Z. Wang, Y. Wu, Y. Lu, J. Am. Chem. Soc. 2015, 137, 14456.
dc.identifier.citedreferenceN. S. R. Satyavolu, L. H. Tan, Y. Lu, J. Am. Chem. Soc. 2016, 138, 16542.
dc.identifier.citedreferenceL. Chang, Y. Khan, L. Li, N. Yang, P. Yin, L. Guo, RSC Adv. 2017, 7, 13896.
dc.identifier.citedreferenceJ. Gao, C. M. Bender, C. J. Murphy, Langmuir 2003, 19, 9065.
dc.identifier.citedreferenceW. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, N. A. Kotov, Nat. Commun. 2013, 4, 2689.
dc.identifier.citedreferenceG. Chen, K. J. Gibson, D. Liu, H. C. Rees, J.â H. Lee, W. Xia, R. Lin, H. L. Xin, O. Gang, Y. Weizmann, Nat. Mater. 2019, 18, 169.
dc.identifier.citedreferenceS. Loescher, S. Groeer, A. Walther, Angew. Chem., Int. Ed. Engl. 2018, 57, 10436.
dc.identifier.citedreferenceA. R. Chandrasekaran, O. Levchenko, Chem. Mater. 2016, 28, 5569.
dc.identifier.citedreferenceA. Moeinian, F. N. Gür, J. Gonzalezâ Torres, L. Zhou, V. D. Murugesan, A. D. Dashtestani, H. Guo, T. L. Schmidt, S. Strehle, Nano Lett. 2019, 19, 1061.
dc.identifier.citedreferenceJ. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, J. Phys. Chem. C 2012, 116, 1627.
dc.identifier.citedreferenceS. Simoncelli, E.â M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, T. Lohmüller, ACS Nano 2016, 10, 9809.
dc.identifier.citedreferenceS. Li, L. Xu, W. Ma, H. Kuang, L. Wang, C. Xu, Small 2015, 11, 3435.
dc.identifier.citedreferenceM. J. Urban, P. K. Dutta, P. Wang, X. Duan, X. Shen, B. Ding, Y. Ke, N. Liu, J. Am. Chem. Soc. 2016, 138, 5495.
dc.identifier.citedreferenceZ. Fan, A. O. Govorov, Nano Lett. 2010, 10, 2580.
dc.identifier.citedreferenceQ. Jiang, Q. Liu, Y. Shi, Z.â G. Wang, P. Zhan, J. Liu, C. Liu, H. Wang, X. Shi, L. Zhang, J. Sun, B. Ding, M. Liu, Nano Lett. 2017, 17, 7125.
dc.identifier.citedreferenceM. Sun, L. Xu, J. H. Bahng, H. Kuang, S. Alben, N. A. Kotov, C. Xu, Nat. Commun. 2017, 8, 1847.
dc.identifier.citedreferenceF. Gao, M. Sun, W. Ma, X. Wu, L. Liu, H. Kuang, C. Xu, Adv. Mater. 2017, 29, 1606864.
dc.identifier.citedreferenceS. Li, L. Xu, W. Ma, X. Wu, M. Sun, H. Kuang, L. Wang, N. A. Kotov, C. Xu, J. Am. Chem. Soc. 2016, 138, 306.
dc.identifier.citedreferenceC. Ding, C. R. Cantor, Proc. Natl. Acad. Sci. USA 2003, 100, 3059.
dc.identifier.citedreferenceW. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, N. A. Kotov, Nano Lett. 2009, 9, 2153.
dc.identifier.citedreferenceH. Kuang, S. Zhao, W. Chen, W. Ma, Q. Yong, L. Xu, L. Wang, C. Xu, Biosens. Bioelectron. 2011, 26, 2495.
dc.identifier.citedreferenceW. Ma, H. Yin, L. Xu, L. Wang, H. Kuang, C. Xu, Chem. Commun. 2013, 49, 5369.
dc.identifier.citedreferenceZ. Ma, H. Han, Colloids Surf. A 2008, 317, 229.
dc.identifier.citedreferenceM. Sun, L. Xu, A. Qu, P. Zhao, T. Hao, W. Ma, C. Hao, X. Wen, F. M. Colombari, A. F. de Moura, N. A. Kotov, C. Xu, H. Kuang, Nat. Chem. 2018, 10, 821.
dc.identifier.citedreferenceN. Habibi, N. Kamaly, A. Memic, H. Shafiee, Nano Today 2016, 11, 41.
dc.identifier.citedreferenceY. Tian, H. V. Zhang, K. L. Kiick, J. G. Saven, D. J. Pochan, Chem. Mater. 2018, 30, 8510.
dc.identifier.citedreferenceJ. Kumar, H. Eraña, E. Lópezâ Martínez, N. Claes, V. F. Martín, D. M. Solís, S. Bals, A. L. Cortajarena, J. Castilla, L. M. Lizâ Marzán, Proc. Natl. Acad. Sci. USA 2018, 115, 3225.
dc.identifier.citedreferenceM. Arruebo, M. Valladares, à . Gonzálezâ Fernández, J. Nanomater. 2009, 2009, 1.
dc.identifier.citedreferenceX. Wu, L. Xu, L. Liu, W. Ma, H. Yin, H. Kuang, L. Wang, C. Xu, N. A. Kotov, J. Am. Chem. Soc. 2013, 135, 18629.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.