Show simple item record

Collective aggressiveness limits colony persistence in high‐ but not low‐elevation sites at Amazonian social spiders

dc.contributor.authorLichtenstein, James L. L.
dc.contributor.authorFisher, David N.
dc.contributor.authorMcEwen, Brendan L.
dc.contributor.authorNondorf, Daniel T.
dc.contributor.authorCalvache, Esteban
dc.contributor.authorSchmitz, Clara
dc.contributor.authorElässer, Jana
dc.contributor.authorPruitt, Jonathan N.
dc.date.accessioned2020-01-13T15:02:40Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:02:40Z
dc.date.issued2019-12
dc.identifier.citationLichtenstein, James L. L.; Fisher, David N.; McEwen, Brendan L.; Nondorf, Daniel T.; Calvache, Esteban; Schmitz, Clara; Elässer, Jana ; Pruitt, Jonathan N. (2019). "Collective aggressiveness limits colony persistence in high‐ but not low‐elevation sites at Amazonian social spiders." Journal of Evolutionary Biology 32(12): 1362-1367.
dc.identifier.issn1010-061X
dc.identifier.issn1420-9101
dc.identifier.urihttps://hdl.handle.net/2027.42/152489
dc.description.abstractIdentifying the traits that foster group survival in contrasting environments is important for understanding local adaptation in social systems. Here, we evaluate the relationship between the aggressiveness of social spider colonies and their persistence along an elevation gradient using the Amazonian spider, Anelosimus eximius. We found that colonies of A. eximius exhibit repeatable differences in their collective aggressiveness (latency to attack prey stimuli) and that colony aggressiveness is linked with persistence in a site‐specific manner. Less aggressive colonies are better able to persist at high‐elevation sites, which lack colony‐sustaining large‐bodied prey, whereas colony aggression was not related to chance of persistence at low‐elevation sites. This suggests that low aggressiveness promotes colony survival in high‐elevation, prey‐poor habitats, perhaps via increased tolerance to resource limitation. These data reveal that the collective phenotypes that relate to colony persistence vary by site, and thus, the path of social evolution in these environments is likely to be affected.Colony‐level selection on collective aggressiveness varies with elevation in social spiders. Aggressive societies are disfavoured at high elevation sites, but their odds of persistence increase in lowland rain forests.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraraneae
dc.subject.otherinsect abundance
dc.subject.otherlife history
dc.subject.othermultilevel selection
dc.subject.othercollective behaviour
dc.titleCollective aggressiveness limits colony persistence in high‐ but not low‐elevation sites at Amazonian social spiders
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152489/1/jeb13532_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152489/2/jeb13532.pdf
dc.identifier.doi10.1111/jeb.13532
dc.identifier.sourceJournal of Evolutionary Biology
dc.identifier.citedreferenceRiechert, S. E., & Hedrick, A. V. ( 1993 ). A test for correlations among fitness‐linked behavioral traits in the spider agelenopsis‐aperta (araneae, agelenidae). Animal Behaviour, 46, 669 – 675.
dc.identifier.citedreferencePinter‐Wollman, N., Mi, B. R., & Pruitt, J. N. ( 2017 ). Replacing bold individuals has a smaller impact on group performance than replacing shy individuals. Behavioral Ecology, 28, 883 – 889.
dc.identifier.citedreferencePowers, K. S., & Aviles, L. ( 2007 ). The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology, 76, 995 – 1003.
dc.identifier.citedreferencePruitt, J. N. ( 2012 ). Behavioural traits of colony founders affect the life history of their colonies. Ecology Letters, 15, 1026 – 1032.
dc.identifier.citedreferencePruitt, J. N., & Goodnight, C. J. ( 2014 ). Site‐specific group selection drives locally adapted colony compositions. Nature, 28, 1248 – 1256.
dc.identifier.citedreferencePruitt, J. N., Grinsted, L., & Settepani, V. ( 2013 ). Linking levels of personality: Personalities of the ‘average’ and ‘most extreme’ group members predict colony‐level personality. Animal Behaviour, 86, 391 – 399.
dc.identifier.citedreferencePruitt, J. N., McEwen, B. L., Cassidy, S. T., Najm, G. M., & Pinter‐Wollman, N. ( 2019 ). Experimental evidence of frequency‐dependent selection on group behaviour. Nature ecology & evolution, 3, 702.
dc.identifier.citedreferencePruitt, J. N., & Riechert, S. E. ( 2011 ). How within‐group behavioral variation and task efficiency enhance fitness in a social group. Proceedings of the Royal Society Biological Sciences Series B, 278, 1209 – 1215.
dc.identifier.citedreferencePruitt, J. N., Wright, C. M., Lichtenstein, J. L., Chism, G. T., McEwen, B. L., Kamath, A., & Pinter‐Wollman, N. ( 2017 ). Selection for collective aggressiveness favors social susceptibility in social spiders. Current Biology, 28, 100 – 105.e4.
dc.identifier.citedreferencePruitt, J. N., Wright, C. M., Lichtenstein, J. L. L., Chism, G. T., McEwen, B. L., Kamath, A., & Pinter‐Wollman, N. ( 2018 ). Selection for collective aggressiveness favors social susceptibility in social spiders. Current Biology, 28, 100‐+.
dc.identifier.citedreferencePurcell, J., & Aviles, L. ( 2008 ). Gradients of precipitation and ant abundance may contribute to the altitudinal range limit of subsocial spiders: Insights from a transplant experiment. Proceedings of the Royal Society B‐Biological Sciences, 275, 2617 – 2625.
dc.identifier.citedreferenceRiechert, S. E. ( 1993a ) The evolution of behavioral phenotypes ‐ lessons learned from divergent spider populations. Advances in the study of behavior (vol. 22, pp. 103 – 134 ).
dc.identifier.citedreferenceRiechert, S. E. ( 1993b ). The evolution of behavioral phenotypes: Lessons learned from divergent spider populations. Advances in the Study of Behavior, 22, 103 – 134.
dc.identifier.citedreferenceRiechert, S., & Roeloffs, R. ( 1993 ) Inbreeding and its consequences in the social spiders. In N. W. Thornhill (Ed.), The natural history of inbreeding and outbreeding (pp. 283 – 303 ). Chicago, IL: University of Chicago Press.
dc.identifier.citedreferenceSeppa, P., Queller, D. C., & Strassmann, J. E. ( 2002 ). Reproduction in foundress associations of the social wasp, polistes carolina: Conventions, competition, and skew. Behavioral Ecology, 13, 531 – 542.
dc.identifier.citedreferenceShaffer, Z., Sasaki, T., Haney, B., Janssen, M., Pratt, S. C., & Fewell, J. H. ( 2016 ). The foundress’s dilemma: Group selection for cooperation among queens of the harvester ant, pogonomyrmex californicus. Scientific Reports, 6.
dc.identifier.citedreferenceSharpe, R. V., & Avilés, L. ( 2016 ). Prey size and scramble vs. Contest competition in a social spider: Implications for population dynamics. Journal of Animal Ecology, 85, 1401 – 1410.
dc.identifier.citedreferenceStoffel, M. A., Nakagawa, S., & Schielzeth, H. ( 2017 ). Rptr: Repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods in Ecology and Evolution, 8, 1639 – 1644.
dc.identifier.citedreferenceStraus, S., & Avilés, L. ( 2018 ). Effects of host colony size and hygiene behaviours on social spider kleptoparasite loads along an elevation gradient. Functional ecology, 32, 2707 – 2716.
dc.identifier.citedreferenceTibbetts, E. A., & Reeve, H. K. ( 2003 ). Benefits of foundress associations in the paper wasp polistes dominulus: Increased productivity and survival, but no assurance of fitness returns. Behavioral Ecology, 14, 510 – 514.
dc.identifier.citedreferenceTilman, D. ( 1982 ). Resource competition and community structure. Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceVollrath, F. ( 1982 ). Colony foundation in a social spider. Zeitschrift Fur Tierpsychologie‐Journal of Comparative Ethology, 60, 313 – 324.
dc.identifier.citedreferenceVollrath, F. ( 1987 ). Kleptobiosis in spiders. In W. Nentwig (Ed.), Ecophysiology of spiders. Berlin, Germany: Springer.
dc.identifier.citedreferenceWalsh, M. R., Broyles, W., Beston, S. M., & Munch, S. B. ( 2016 ). Predator‐driven brain size evolution in natural populations of trinidadian killifish ( Rivulus hartii ). Proceedings of the Royal Society B‐Biological Sciences, 283 ( 1834 ), 20161075.
dc.identifier.citedreferenceWatanabe, M. E. ( 2008 ). Colony collapse disorder: Many suspects, no smoking gun. BioScience, 58, 384 – 388.
dc.identifier.citedreferenceWray, M. K., Mattila, H. R., & Seeley, T. D. ( 2011 ). Collective personalities in honeybee colonies are linked to colony fitness. Animal Behaviour, 81, 559 – 568.
dc.identifier.citedreferenceWray, M. K., & Seeley, T. D. ( 2011 ). Consistent personality differences in house‐hunting behavior but not decision speed in swarms of honey bees (apis mellifera). Behavioral Ecology and Sociobiology, 65, 2061 – 2070.
dc.identifier.citedreferenceYip, E. C., Powers, K. S., & Aviles, L. ( 2008 ). Cooperative capture of large prey solves scaling challenge faced by spider societies. Proceedings of the National Academy of Sciences of the United States of America, 105, 11818 – 11822.
dc.identifier.citedreferenceAviles, L. ( 1986 ). Sex‐ratio bias and possible group selection in the social spider anelosimus‐eximius. American Naturalist, 128, 1 – 12.
dc.identifier.citedreferenceAviles, L. ( 1993 ). Interdemic selection and the sex‐ratio ‐ a social spider perspective. American Naturalist, 142, 320 – 345.
dc.identifier.citedreferenceAviles, L., & Guevara, J. ( 2017 ). Sociality in spiders. In D. R. Rubenstein & P. Abbot (Eds.), Comparative social evolution (pp. 188 – 223 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceAviles, L., & Tufino, P. ( 1998 ). Colony size and individual fitness in the social spider anelosimus eximius. American Naturalist, 152, 403 – 418.
dc.identifier.citedreferenceBengston, S., & Jandt, J. M. ( 2014 ). The development of collective personality: The ontogenetic drivers of behavioral variation across groups. Frontiers in Ecology and Evolution, 2, 81.
dc.identifier.citedreferenceBilde, T., Coates, K. S., Birkhofer, K., Bird, T., Maklakov, A. A., Lubin, Y., & Aviles, L. ( 2007 ). Survival benefits select for group living in a social spider despite reproductive costs. Journal of Evolutionary Biology, 20, 2412 – 2426.
dc.identifier.citedreferenceDavis, K., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E., & Abatzoglou, J. T. ( 2019 ). Microclimatic buffering in forests of the future: The role of local water balance. Ecography, 42 ( 1 ), 1 – 11.
dc.identifier.citedreferenceDrummond, H., & Burghardt, G. M. ( 1983 ). Geographic‐variation in the foraging behavior of the garter snake, thamnophis‐elegans. Behavioral Ecology and Sociobiology, 12, 43 – 48.
dc.identifier.citedreferenceDunbrack, R. L., Clarke, L., & Bassler, C. ( 1996 ). Population level differences in aggressiveness and their relationship to food density in a stream salmonid (salvelinus fontinalis). Journal of Fish Biology, 48, 615 – 622.
dc.identifier.citedreferenceFewell, J. H., & Page, R. E. ( 1999 ). The emergence of division of labour in forced associations of normally solitary ant queens. Evolutionary Ecology Research, 1, 537 – 548.
dc.identifier.citedreferenceGordon, D. M. ( 2013 ). The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature, 498, 91 – 93.
dc.identifier.citedreferenceGuevara, J., & Aviles, L. ( 2007 ). Multiple techniques confirm elevational differences in insect size that may influence spider sociality. Ecology, 88, 2015 – 2023.
dc.identifier.citedreferenceGuevara, J., & Aviles, L. ( 2015 ). Ecological predictors of spider sociality in the americas. Global Ecology and Biogeography, 24, 1181 – 1191.
dc.identifier.citedreferenceHahn, D. A., & Tschinkel, W. R. ( 1997 ). Settlement and distribution of colony‐founding queens of the arboreal ant, crematogaster ashmeadi, in a longleaf pine forest. Insectes Sociaux, 44, 323 – 336.
dc.identifier.citedreferenceHenschel, J. R. ( 1998 ). Predation on social and solitary individuals of the spider stegodyphus dumicola (araneae, eresidae). Journal of Arachnology, 26, 61 – 69.
dc.identifier.citedreferenceHenschel, J. R., Lubin, Y. D., & Schneider, J. ( 1995 ). Sexual competition in an inbreeding social spider, stegodyphus‐dumicola (araneae, eresidae). Insectes Sociaux, 42, 419 – 426.
dc.identifier.citedreferenceHoffman, C. R., & Avilés, L. ( 2017 ). Rain, predators, and spider sociality: A manipulative experiment. Behavioral Ecology, 28, 589 – 596.
dc.identifier.citedreferenceJandt, J. M., Bengston, S., Pinter‐Wollman, N., Pruitt, J. N., Raine, N. E., Dornhaus, A., & Sih, A. ( 2014 ). Behavioral syndromes and social insects: Multiple levels of personality. Biological Reviews, 89, 48 – 67.
dc.identifier.citedreferenceKamath, A., Primavera, S. D., Wright, C. M., Doering, G. N., Sheehy, K. A., Pinter‐wollman, N., & Pruitt, J. N. ( 2019 ). Collective behavior and colony persistence of social spiders depends on their physical environment. Behavioral Ecology, 30 ( 1 ), 39 – 47.
dc.identifier.citedreferenceKeiser, C. N., Wright, C. M., & Pruitt, J. N. ( 2015 ). Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size. Behavioural Processes, 119, 14 – 21.
dc.identifier.citedreferenceKralj‐Fiser, S., & Schneider, J. M. ( 2012 ). Individual behavioural consistency and plasticity in an urban spider. Animal Behaviour, 84, 197 – 204.
dc.identifier.citedreferenceKralj‐Fiser, S., Schneider, J. M., Justinek, Z., Kalin, S., Gregoric, M., Pekar, S., & Kuntner, M. ( 2012 ). Mate quality, not aggressive spillover, explains sexual cannibalism in a size‐dimorphic spider. Behavioral Ecology and Sociobiology, 66, 145 – 151.
dc.identifier.citedreferenceKrause, J., & Ruxton, G. D. ( 2002 ). Living in groups. Oxford UK: Oxford Press.
dc.identifier.citedreferenceLichtenstein, J. L. L., Bengston, S., Aviles, L., & Pruitt, J. N. ( 2018 ). Female‐biased sex ratios increase colony survival and reproductive output in the spider anelosimus studiosus. The American Naturalist, 192 ( 5 ), 552 – 563.
dc.identifier.citedreferenceLichtenstein, J. L. L., & Pruitt, J. N. ( 2015 ). Similar patterns of frequency‐dependent selection on animal personalities emerge in three species of social spiders. Journal of Evolutionary Biology, 28 ( 6 ), 1248 – 1256.
dc.identifier.citedreferenceLichtenstein, J. L. L., Wright, C. M., Luscuskie, L. P., Montgomery, G. A., Pinter‐Wollman, N., & Pruitt, J. N. ( 2017 ). Participation in cooperative prey capture and the benefits gained from it are associated with individual personality. Current Zoology, 63, 561 – 567.
dc.identifier.citedreferenceMagurran, A. E., & Seghers, B. H. ( 1991 ). Variation in schooling and aggression amongst guppy (poecilia‐reticulata) populations in trinidad. Behaviour, 118, 214 – 234.
dc.identifier.citedreferenceMiller, S. E., Bluher, S. E., Bell, E., Cini, A., da Silva, R. C., de Souza, A. R., … Sheehan, M. J. ( 2018 ). Waspnest: A worldwide assessment of social polistine nesting behavior. Ecology, 99, 2405 – 2405.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.