Show simple item record

Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis

dc.contributor.authorNave, L. E.
dc.contributor.authorSwanston, C. W.
dc.contributor.authorMishra, U.
dc.contributor.authorNadelhoffer, K. J.
dc.date.accessioned2020-01-13T15:03:24Z
dc.date.available2020-01-13T15:03:24Z
dc.date.issued2013-05
dc.identifier.citationNave, L. E.; Swanston, C. W.; Mishra, U.; Nadelhoffer, K. J. (2013). "Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis." Soil Science Society of America Journal 77(3): 1035-1047.
dc.identifier.issn0361-5995
dc.identifier.issn1435-0661
dc.identifier.urihttps://hdl.handle.net/2027.42/152514
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Soil Science Society of America, Inc.
dc.titleAfforestation Effects on Soil Carbon Storage in the United States: A Synthesis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152514/1/saj2sssaj20120236.pdf
dc.identifier.doi10.2136/sssaj2012.0236
dc.identifier.sourceSoil Science Society of America Journal
dc.identifier.citedreferenceRolfe, G.L., and Boggess, W.R.. 1973. Soil conditions under old field and forest cover in southern Illinois. Soil Sci. Soc. Am. J. 37: 314 – 318. https://doi.org/10.2136/sssaj1973.03615995003700020040x https://doi.org/10.2136/sssaj1973.03615995003700020040x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1973P538200031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceSauer, T.J., Cambardella, C.A., and Brandle, J.R.. 2007. Soil carbon and tree litter dynamics in a red cedar‐scotch pine shelterbelt. Agrofor. Syst. 71: 163 – 174. https://doi.org/10.1007/s10457‐007‐9072‐7 https://doi.org/10.1007/s10457‐007‐9072‐7 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000249776700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceScharenbroch, B.C., Flores‐Mangual, M.L., Lepore, B., Bockheim, J.G., and Lowery, B.. 2010. Tree encroachment impacts carbon dynamics in a sand prairie in Wisconsin. Soil Sci. Soc. Am. J. 74: 956 – 968. https://doi.org/10.2136/sssaj2009.0223 https://doi.org/10.2136/sssaj2009.0223 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000277500600027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceSchiffman, P.M., and Johnson, W.C.. 1989. Phytomass and detrital carbon storage during forest regrowth in the southeastern U.S. piedmont. Can. J. For. Res. 19: 69 – 78. https://doi.org/10.1139/x89‐010 https://doi.org/10.1139/x89‐010 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989T509600010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceSchmidt, M.W. et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478: 49 – 56. https://doi.org/10.1038/nature10386 https://doi.org/10.1038/nature10386 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000295575400033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceShan, J.P., Morris, L.A., and Hendrick, R.L.. 2001. The effects of management on soil and plant carbon sequestration in slash pine plantations. J. Appl. Ecol. 38: 932 – 941. https://doi.org/10.1046/j.1365‐2664.2001.00648.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000171692900004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceSharrow, S.H., and Ismail, S.. 2004. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor. Syst. 60: 123 – 130. https://doi.org/10.1023/B:AGFO.0000013267.87896.41 https://doi.org/10.1023/B:AGFO.0000013267.87896.41 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000188422300003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceSherman, G.G., and Beckett, P.J.. 2003. Carbon sequestration patterns in the replanted areas of the Sudbury barrens. Forest Research Information Paper. Ontario For. Res. Inst., Ontario, Canada.
dc.identifier.citedreferenceSmith, F.C., Johnson, A.H., Dranoff, M., and Wibiralske, A.. 1997. Biomass and nutrient accumulation during natural afforestation of iron‐smelting slag. Restor. Ecol. 5: 56 – 65. https://doi.org/10.1046/j.1526‐100X.1997.09706.x https://doi.org/10.1046/j.1526‐100X.1997.09706.x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WP94300006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceSmith, J.E., Heath, L.S., Skog, K.E., and Birdsey, R.A.. 2006. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the U.S. GTR NE‐343. U.S. Dep. of Agric., For. Serv., Northeastern Res. Stn., Newtown Square, PA.
dc.identifier.citedreferenceSoil Survey Staff. 2011. National Cooperative Soil Characterization Data. Soil Survey Laboratory, National Soil Survey Center, USDA‐Natural Resources Conservation Service, Lincoln, NE. http://ssldata.nrcs.usda.gov (accessed 11 Jan. 2011).
dc.identifier.citedreferenceSpringsteen, A., Loya, W., Liebig, M., and Hendrickson, J.. 2010. Soil carbon and nitrogen across a chronosequence of woody plant expansion in North Dakota. Plant Soil 328: 369 – 379. https://doi.org/10.1007/s11104‐009‐0117‐8 https://doi.org/10.1007/s11104‐009‐0117‐8 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000274730400030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceThiffault, E., Hannam, K.D., Pare, D., Titus, B.D., Hazlett, P.W., Maynard, D.G., and Brais, S.. 2011. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 19: 278 – 309. https://doi.org/10.1139/a11‐009 https://doi.org/10.1139/a11‐009 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000297028000014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceVan Auken, O.W. 2000. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Syst. 31: 197 – 215. https://doi.org/10.1146/annurev.ecolsys.31.1.197 https://doi.org/10.1146/annurev.ecolsys.31.1.197 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000166011500009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceVance, E.D. 2000. Agricultural site productivity: Principles derived from long‐term experiments and their implications for intensively managed forests. For. Ecol. Manage. 138: 369 – 396. https://doi.org/10.1016/S0378‐1127(00)00425‐4 https://doi.org/10.1016/S0378‐1127(00)00425‐4 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000166241900026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceVitorello, V.A., Cerri, C.C., Andreux, F., Feller, C., and Victoria, R.L.. 1989. Organic matter and natural carbon‐13 distribution in forested and cultivated oxisols. Soil Sci. Soc. Am. J. 53: 773 – 778. https://doi.org/10.2136/sssaj1989.03615995005300030024x https://doi.org/10.2136/sssaj1989.03615995005300030024x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989AC08300024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceWilde, S.A. 1964. Changes in soil productivity induced by pine plantations. Soil Sci. 97: 276 – 278. https://doi.org/10.1097/00010694‐196404000‐00009 https://doi.org/10.1097/00010694‐196404000‐00009 -->
dc.identifier.citedreferenceWilhelm, W.W., Johnson, J.M.F., Hatfield, J.L., Voorhees, W.B., and Linden, D.R.. 2004. Crop and soil productivity response to corn residue removal: A literature review. Agron. J. 96: 1 – 17. https://doi.org/10.2134/agronj2004.0001 https://doi.org/10.2134/agronj2004.0001 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000188437400001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceZou, X., and Bashkin, M.A.. 1998. Soil carbon accretion and earthworm recovery following revegetation in abandoned sugarcane fields. Soil Biol. Biochem. 30: 825 – 830. https://doi.org/10.1016/S0038‐0717(97)00155‐7 https://doi.org/10.1016/S0038‐0717(97)00155‐7 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074053900016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceAdams, D.C., Gurevitch, J., and Rosenberg, M.S.. 1997. Resampling tests for meta‐analysis of ecological data. Ecology 78: 1277 – 1283. https://doi.org/10.1890/0012‐9658(1997)078[1277:RTFMAO]2.0.CO;2 https://doi.org/10.1890/0012‐9658(1997)078[1277:RTFMAO]2.0.CO;2 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XB14400030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceAkala, V.A., and Lal, R.. 2000. Potential of mine land reclamation for soil organic carbon sequestration in Ohio. Land Degrad. Dev. 11: 289 – 297. https://doi.org/10.1002/1099‐145X(200005/06)11:3<289::AID‐LDR385>3.0.CO;2‐Y https://doi.org/10.1002/1099‐145X(200005/06)11:3<289::AID‐LDR385>3.0.CO;2‐Y -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000087967900007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceAlvarez, R. 2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manage. 21: 38 – 52. https://doi.org/10.1079/SUM2005291 https://doi.org/10.1079/SUM2005291 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000229339900007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceAmichev, B.Y., Burger, J.A., and Rodrigue, J.A.. 2008. Carbon sequestration by forests and soils on mined land in the Midwestern and Appalachian coalfields of the US. For. Ecol. Manage. 256: 1949 – 1959. https://doi.org/10.1016/j.foreco.2008.07.020, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000261115800014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceArevalo, C.B.M., Bhatti, J.S., Chang, S.X., and Sidders, D.. 2009. Ecosystem carbon stocks and distribution under different land‐uses in north central Alberta, Canada. For. Ecol. Manage. 257: 1776 – 1785. https://doi.org/10.1016/j.foreco.2009.01.034 https://doi.org/10.1016/j.foreco.2009.01.034 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000265342200017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceBalesdent, J., Wagner, G.H., and Mariotti, A.. 1988. Soil organic‐matter turnover in long‐term field experiments as revealed by Carbon‐13 natural abundance. Soil Sci. Soc. Am. J. 52: 118 – 124. https://doi.org/10.2136/sssaj1988.03615995005200010021x https://doi.org/10.2136/sssaj1988.03615995005200010021x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988M123400021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceBambrick, A.D., Whalen, J.K., Bradley, R.L., Cogliastro, A., Gordon, A.M., Olivier, A., and Thevathasan, N.V.. 2010. Spatial heterogeneity of soil organic carbon in tree‐based intercropping systems in Quebec and Ontario, Canada. Agrofor. Syst. 79: 343 – 353. https://doi.org/10.1007/s10457‐010‐9305‐z https://doi.org/10.1007/s10457‐010‐9305‐z -->
dc.identifier.citedreferenceBashkin, M.A., and Binkley, D.. 1998. Changes in soil carbon following afforestation in Hawaii. Ecology 79: 828 – 833. https://doi.org/10.1890/0012‐9658(1998)079[0828:CISCFA]2.0.CO;2 https://doi.org/10.1890/0012‐9658(1998)079[0828:CISCFA]2.0.CO;2 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000073060300007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceBerthrong, S.T., Jobbagy, E.G., and Jackson, R.B.. 2009. A global meta‐analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 19: 2228 – 2241. https://doi.org/10.1890/08‐1730.1 https://doi.org/10.1890/08‐1730.1 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000271874300020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceBinkley, D., and Resh, S.C.. 1999. Rapid changes in soils following Eucalyptus afforestation in Hawaii. Soil Sci. Soc. Am. J. 63: 222 – 225. https://doi.org/10.2136/sssaj1999.03615995006300010032x https://doi.org/10.2136/sssaj1999.03615995006300010032x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079359600032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceBird, P.R. 1998. Tree windbreaks and shelter benefits to pasture in temperate grazing systems. Agrofor. Syst. 41: 35 – 54. https://doi.org/10.1023/A:1006092104201 https://doi.org/10.1023/A:1006092104201 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000076330600003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceBirdsey, R., Pregitzer, K., and Lucier, A.. 2006. Forest carbon management in the United States. J. Environ. Qual. 35: 1461 – 1469. https://doi.org/10.2134/jeq2005.0162 https://doi.org/10.2134/jeq2005.0162 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000239189900053&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceBoutton, T.W., Archer, S.R., Midwood, A.J., Zitzer, S.F., and Bol, R.. 1998. δ 13 C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82: 5 – 41. https://doi.org/10.1016/S0016‐7061(97)00095‐5 https://doi.org/10.1016/S0016‐7061(97)00095‐5 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000073073400002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceChristensen, N.L., and MacAller, T.. 1985. Soil mineral nitrogen transformations during succession in the Piedmont of North Carolina. Soil Biol. Biochem. 17: 675 – 681. https://doi.org/10.1016/0038‐0717(85)90045‐8 https://doi.org/10.1016/0038‐0717(85)90045‐8 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1985AQX4200012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceColeman, M., Isebrands, J., Tolsted, D., and Tolbert, V.. 2004. Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environ. Manage. 33: S299 – S308. https://doi.org/10.1007/s00267‐003‐9139‐9 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000203094700027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceCompton, J.E., and Boone, R.D.. 2000. Long‐term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81: 2314 – 2330. https://doi.org/10.1890/0012‐9658(2000)081[2314:LTIOAO]2.0.CO;2, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088888900023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceDe Gryze, S., Six, J., Paustian, K., Morris, S.J., Paul, E.A., and Merck, R.. 2004. Soil organic carbon pool changes following land‐use conversions. Glob. Change Biol. 10: 1120 – 1132. https://doi.org/10.1111/j.1529‐8817.2003.00786.x https://doi.org/10.1111/j.1529‐8817.2003.00786.x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000222206300007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceDowell, R.C., Gibbins, D., Rhoads, J.L., and Pallardy, S.G.. 2009. Biomass production physiology and soil carbon dynamics in short‐rotation‐grown Populus deltoides and P. deltoides ´ P. nigra hybrids. For. Ecol. Manage. 257: 134 – 142. https://doi.org/10.1016/j.foreco.2008.08.023 https://doi.org/10.1016/j.foreco.2008.08.023 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000261856000015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceFox, T.R. 2000. Sustained productivity in intensively managed forest plantations. For. Ecol. Manage. 138: 187 – 202. https://doi.org/10.1016/S0378‐1127(00)00396‐0 https://doi.org/10.1016/S0378‐1127(00)00396‐0 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000166241900014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceGarrett, H.E., Kerley, M.S., Ladyman, K.P., Walter, W.D., Godsey, L.D., Van Sambeek, J.W., and Brauer, D.K.. 2004. Hardwood silvopasture management in North America. Agrofor. Syst. 61–62: 21 – 33. https://doi.org/10.1023/B:AGFO.0000028987.09206.6b http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000221640600003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceGodbold, D.L. et al. 2006. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281: 15 – 24. https://doi.org/10.1007/s11104‐005‐3701‐6 https://doi.org/10.1007/s11104‐005‐3701‐6 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000237441800003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceGrigal, D.F., and Berguson, W.E.. 1998. Soil carbon changes associated with short‐rotation systems. Biomass Bioenergy 14: 371 – 377. https://doi.org/10.1016/S0961‐9534(97)10073‐3 https://doi.org/10.1016/S0961‐9534(97)10073‐3 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000073879300010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceGuo, L.B., and Gifford, R.M.. 2002. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 8: 345 – 360. https://doi.org/10.1046/j.1354‐1013.2002.00486.x https://doi.org/10.1046/j.1354‐1013.2002.00486.x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000175570200006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceHamburg, S.P. 1984. Effects of forest growth on soil nitrogen and organic matter pools following release from subsistence agriculture. In: Stone, E.L., editor, Proceedings of the 6th North American Forest Soils Conference, Knoxville, TN. June 1983. Univ. of Tennessee, Knoxville. p. 145 – 148.
dc.identifier.citedreferenceHansen, E.A. 1993. Soil carbon sequestration beneath hybrid poplar plantations in the North Central United States. Biomass Bioenergy 5: 431 – 436. https://doi.org/10.1016/0961‐9534(93)90038‐6 https://doi.org/10.1016/0961‐9534(93)90038‐6 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993NH26600004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceHedges, L.V., and Olkin, I.. 1985. Statistical methods for meta‐analysis. Academic Press, New York.
dc.identifier.citedreferenceHedges, L.V., Gurevitch, J., and Curtis, P.S.. 1999. The meta‐analysis of response ratios in experimental ecology. Ecology 80: 1150 – 1156. https://doi.org/10.1890/0012‐9658(1999)080[1150:TMAORR]2.0.CO;2 https://doi.org/10.1890/0012‐9658(1999)080[1150:TMAORR]2.0.CO;2 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081368500006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceHooker, T.D., and Compton, J.E.. 2003. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 13: 299 – 313. https://doi.org/10.1890/1051‐0761(2003)013[0299:FECANA]2.0.CO;2 https://doi.org/10.1890/1051‐0761(2003)013[0299:FECANA]2.0.CO;2 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000182669300003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceHosner, J.F., and Graney, D.L.. 1970. The relative growth of three forest tree species on soils associated with different successional stages in Virginia. Am. Midl. Nat. 84: 418 – 427. https://doi.org/10.2307/2423857 https://doi.org/10.2307/2423857 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1970H854400006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceJackson, R.B., Banner, J.L., Jobbagy, E.G., Pockman, W.T., and Wall, D.H.. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418: 623 – 626. https://doi.org/10.1038/nature00910 https://doi.org/10.1038/nature00910 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000177305600038&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceJandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K., and Byrne, K.A.. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137: 253 – 268. https://doi.org/10.1016/j.geoderma.2006.09.003 https://doi.org/10.1016/j.geoderma.2006.09.003 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243842700001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceJobbágy, E.G., and Jackson, R.B.. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10: 423 – 436. https://doi.org/10.1890/1051‐0761(2000)010[0423:TVDOSO]2.0.CO;2 https://doi.org/10.1890/1051‐0761(2000)010[0423:TVDOSO]2.0.CO;2 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086008300010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceJose, S., Gillespie, A.R., Seifert, J.R., and Biehle, D.J.. 2000. Defining competition vectors in a temperate alley cropping system in the midwestern USA: 2. Competition for water. Agrofor. Syst. 48: 41 – 59. https://doi.org/10.1023/A:1006289322392 https://doi.org/10.1023/A:1006289322392 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000085007000004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceKleber, M., Nico, P.S., Plante, A., Filley, T., Kramer, M., Swanston, C., and Sollins, P.. 2010. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Change Biol. 17: 1097 – 1107. https://doi.org/10.1111/j.1365‐2486.2010.02278.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000285878000034&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceLadha, J.K., Reddy, C.K., Padre, A.T., and van Kessel, C.. 2011. Role of nitrogen fertilization in sustaining organic matter in cultivated soils. J. Environ. Qual. 40: 1756 – 1766. https://doi.org/10.2134/jeq2011.0064 https://doi.org/10.2134/jeq2011.0064 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000296571300009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceLaganiere, J., Angers, D.A., and Pare, D.. 2010. Carbon accumulation in agricultural soils after afforestation: A meta‐analysis. Glob. Change Biol. 16: 439 – 453. https://doi.org/10.1111/j.1365‐2486.2009.01930.x https://doi.org/10.1111/j.1365‐2486.2009.01930.x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000274419200035&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceLal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123: 1 – 22. https://doi.org/10.1016/j.geoderma.2004.01.032 https://doi.org/10.1016/j.geoderma.2004.01.032 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000224881800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceLangley, J.A., and Hungate, B.A.. 2003. Mycorrhizal controls on belowground litter quality. Ecology 84: 2302 – 2312. https://doi.org/10.1890/02‐0282 https://doi.org/10.1890/02‐0282 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000185226100007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceLeisman, G.A. 1957. A vegetation and soil chronosequence on the Mesabi iron range spoil banks, Minnesota. Ecol. Monogr. 27: 221 – 245. https://doi.org/10.2307/1942184 https://doi.org/10.2307/1942184 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1957WW77400001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceLiao, J.D., Boutton, T.W., and Jastrowe, J.D.. 2006. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biol. Biochem. 38: 3184 – 3196. https://doi.org/10.1016/j.soilbio.2006.04.003 https://doi.org/10.1016/j.soilbio.2006.04.003 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000241484700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceLorenz, K., and Lal, R.. 2005. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. In: Sparks, D., editor, Advances in agronomy. Vol. 88. London, Academic Press. p. 35 – 66.
dc.identifier.citedreferenceLudwig, B. et al. 2011. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review. Agron. Sustain. Dev. 31: 361 – 372. https://doi.org/10.1051/agro/2010030, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000289791300010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMarkewitz, D., Sartori, F., and Craft, C.. 2002. Soil change and carbon storage in longleaf pine stands planted on marginal agricultural lands. Ecol. Appl. 12: 1276 – 1285. https://doi.org/10.1890/1051‐0761(2002)012[1276:SCACSI]2.0.CO;2 https://doi.org/10.1890/1051‐0761(2002)012[1276:SCACSI]2.0.CO;2 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000179198600004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMartens, D.A., Reedy, T.E., and Lewis, D.T.. 2004. Soil organic carbon content and composition of 130‐year crop, pasture and forest land‐use managements. Glob. Change Biol. 10: 65 – 78. https://doi.org/10.1046/j.1529‐8817.2003.00722.x https://doi.org/10.1046/j.1529‐8817.2003.00722.x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000187848200007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMcKinley, D.C., and Blair, J.M.. 2008. Woody plant encroachment by Juniperus virginiana in a mesic native grassland promotes rapid carbon and nitrogen accrual. Ecosystems 11: 454 – 468. https://doi.org/10.1007/s10021‐008‐9133‐4 https://doi.org/10.1007/s10021‐008‐9133‐4 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000255537400008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMiller, A.W., and Pallardy, S.G.. 2001. Resource competition across the crop‐tree interface in a maize‐silver maple temperate alley cropping stand in Missouri. Agrofor. Syst. 53: 247 – 259. https://doi.org/10.1023/A:1013327510748 https://doi.org/10.1023/A:1013327510748 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000172859000002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMize, C.W., Egeh, M.H., and Batchelor, W.D.. 2005. Predicting maize and soybean production in a sheltered field in the Cornbelt region of North Central USA. Agrofor. Syst. 64: 107 – 116. https://doi.org/10.1007/s10457‐004‐0534‐x https://doi.org/10.1007/s10457‐004‐0534‐x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000228530900003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMontes, R.A., and Christenson, N.L.. 1979. Nitrification and succession in the Piedmont of North Carolina. For. Sci. 25: 287 – 297. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1979HB76000015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMorris, S.J., Bohm, S., Haile‐Mariam, S., and Paul, E.A.. 2007. Evaluation of carbon accrual in afforested agricultural soils. Glob. Change Biol. 13: 1145 – 1156. https://doi.org/10.1111/j.1365‐2486.2007.01359.x https://doi.org/10.1111/j.1365‐2486.2007.01359.x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000247226300005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMulti‐Resolution Land Characteristics Consortium. 2011. 2001 National land cover data (NLCD 2001). USEPA. www.epa.gov/mrlc/nlcd‐2001.html (accessed 20 Feb. 2011).
dc.identifier.citedreferenceNair, V.D., Haile, S.G., Michel, G.A., and Nair, P.K.R.. 2007. Environmental quality improvement of agricultural lands through silvopasture in southeastern United States. Sci. Agric. 64: 513 – 519. https://doi.org/10.1590/S0103‐90162007000500009 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000250175700009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceNave, L.E., Vance, E.D., Swanston, C.W., and Curtis, P.S.. 2009. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N‐mineralization. Geoderma 153: 231 – 240. https://doi.org/10.1016/j.geoderma.2009.08.012 https://doi.org/10.1016/j.geoderma.2009.08.012 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000271094200024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceNave, L.E., Vance, E.D., Swanston, C.W., and Curtis, P.S.. 2010. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manage. 259: 857 – 866. https://doi.org/10.1016/j.foreco.2009.12.009 https://doi.org/10.1016/j.foreco.2009.12.009 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000275223300001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceNeff, J.C., Barger, N.N., Baisden, W.T., Fernandez, D.P., and Asner, G.P.. 2009. Soil carbon storage responses to expanding pinyon‐juniper populations in southern Utah. Ecol. Appl. 19: 1405 – 1416. https://doi.org/10.1890/08‐0784.1 https://doi.org/10.1890/08‐0784.1 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000269075200004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferencePaul, K.I., Polglase, P.J., Nyakuengama, J.G., and Khanna, P.K.. 2002. Change in soil carbon following afforestation. For. Ecol. Manage. 168: 241 – 257. https://doi.org/10.1016/S0378‐1127(01)00740‐X https://doi.org/10.1016/S0378‐1127(01)00740‐X -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000177478900020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferencePaul, E.A., Morris, S.J., Six, J., Paustian, K., and Gregorich, E.G.. 2003. Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Sci. Soc. Am. J. 67: 1620 – 1628. https://doi.org/10.2136/sssaj2003.1620 https://doi.org/10.2136/sssaj2003.1620 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000185303200034&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferencePeichl, M., and Arain, A.A.. 2006. Above‐ and belowground ecosystem biomass and carbon pools in an age‐sequence of temperate pine plantation forests. Agric. For. Meteorol. 140: 51 – 63. https://doi.org/10.1016/j.agrformet.2006.08.004 https://doi.org/10.1016/j.agrformet.2006.08.004 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243200100005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferencePost, W.M., Izaurralde, R.C., Jastrow, J.D., McCarl, B.A., Amonette, J.E., Bailey, V.L., Jardine, P.M., West, T.O., and Zhou, J.. 2004. Enhancement of carbon sequestration in US soils. Bioscience 54: 895 – 908. https://doi.org/10.1641/0006‐3568(2004)054[0895:EOCSIU]2.0.CO;2 https://doi.org/10.1641/0006‐3568(2004)054[0895:EOCSIU]2.0.CO;2 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000224372500008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferencePost, W.M., and Kwon, K.C.. 2000. Soil carbon sequestration and land‐use change: Processes and potential. Glob. Change Biol. 6: 317 – 327. https://doi.org/10.1046/j.1365‐2486.2000.00308.x https://doi.org/10.1046/j.1365‐2486.2000.00308.x -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086198100006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferencePregitzer, K., and Palik, B.. 1997. Changes in ecosystem carbon 46 years after establishing red pine ( Pinus resinosa Ait.) on abandoned agricultural land in the Great Lakes region. In: Paul, E.A. et al., editors, Soil organic matter in temperate agroecosystems: Long‐term experiments in North America, CRC Press, Boca Raton, FL. p. 263 – 270.
dc.identifier.citedreferenceRichter, D.D., Markewitz, D., Trumbore, S.E., and Wells, C.G.. 1999. Rapid accumulation and turnover of soil carbon in a re‐establishing forest. Nature 400: 56 – 58. https://doi.org/10.1038/21867 https://doi.org/10.1038/21867 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081255700047&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceRillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84: 355 – 363. https://doi.org/10.4141/S04‐003 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000226685500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceRillig, M.C., Wright, S.F., Nichols, K.A., Schmidt, W.F., and Torn, M.S.. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233: 167 – 177. https://doi.org/10.1023/A:1010364221169 https://doi.org/10.1023/A:1010364221169 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000169647400003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceRosenberg, M.S., Adams, D.C., and Gurevitch, J.. 2000. MetaWin: Statistical software for meta‐analysis. Sinauer Assoc., Sunderland, MA.
dc.identifier.citedreferenceSarkhot, D.V., Jokela, E.J., and Comerford, N.B.. 2008. Surface soil carbon size‐density fractions altered by loblolly pine families and forest management intensity for a Spodosol in the southeastern US. Plant Soil 307: 99 – 111. https://doi.org/10.1007/s11104‐008‐9587‐3 https://doi.org/10.1007/s11104‐008‐9587‐3 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000256309200008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceSartori, F., Lal, R., Ebinger, M.H., and Eaton, J.A.. 2007. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric. Ecosyst. Environ. 122: 325 – 339. https://doi.org/10.1016/j.agee.2007.01.026 https://doi.org/10.1016/j.agee.2007.01.026 -->, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000248072500006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.