Show simple item record

Fatigue Failure Load of Lithium Disilicate Restorations Cemented on a Chairside Titanium‐Base

dc.contributor.authorKaweewongprasert, Peerapat
dc.contributor.authorPhasuk, Kamolphob
dc.contributor.authorLevon, John A.
dc.contributor.authorEckert, George J.
dc.contributor.authorFeitosa, Sabrina
dc.contributor.authorValandro, Luiz F.
dc.contributor.authorBottino, Marco C.
dc.contributor.authorMorton, Dean
dc.date.accessioned2020-01-13T15:03:32Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:03:32Z
dc.date.issued2019-12
dc.identifier.citationKaweewongprasert, Peerapat; Phasuk, Kamolphob; Levon, John A.; Eckert, George J.; Feitosa, Sabrina; Valandro, Luiz F.; Bottino, Marco C.; Morton, Dean (2019). "Fatigue Failure Load of Lithium Disilicate Restorations Cemented on a Chairside Titanium‐Base." Journal of Prosthodontics 28(9): 973-981.
dc.identifier.issn1059-941X
dc.identifier.issn1532-849X
dc.identifier.urihttps://hdl.handle.net/2027.42/152519
dc.description.abstractPurposeTo evaluate the fatigue failure load of distinct lithium disilicate restoration designs cemented on a chairside titanium base for maxillary anterior implant‐supported restorations.Materials and MethodsA left‐maxillary incisor restoration was virtually designed and sorted into 3 groups: (n = 10/group; CTD: lithium disilicate crowns cemented on custom‐milled titanium abutments; VMLD: monolithic full‐contour lithium disilicate crowns cemented on a chairside titanium‐base; VCLD: lithium disilicate crowns bonded to lithium disilicate customized anatomic structures and then cemented onto a chairside titanium base). The chairside titanium base was air‐abraded with aluminum oxide particles. Subsequently, the titanium base was steam‐cleaned and air‐dried. Then a thin coat of a silane agent was applied. The intaglio surface of the ceramic components was treated with 5% hydrofluoric acid (HF) etching gel, followed by silanization, and bonded with a resin cement. The specimens were fatigued at 20 Hz, starting with a 100 N load (5000× load pulses), followed by stepwise loading from 400 N up to 1400 N (200 N increments) at a maximum of 30,000 cycles each. The failure loads, number of cycles, and fracture analysis were recorded. The data were statistically analyzed using one‐way ANOVA, followed by pairwise comparisons (p < 0.05). Kaplan‐Meier survival plots and Weibull survival analyses were reported.ResultsFor catastrophic fatigue failure load and the total number of cycles for failure, VMLD (1260 N, 175,231 cycles) was significantly higher than VCLD (1080 N, 139,965 cycles) and CDT (1000 N, 133,185 cycles). VMLD had a higher Weibull modulus demonstrating greater structural reliability.ConclusionVMLD had the best fatigue failure resistance when compared with the other two groups.
dc.publisherISO: Geneva
dc.publisherWiley Periodicals, Inc.
dc.subject.othertitanium
dc.subject.otherimplant
dc.subject.otherlithium disilicate
dc.subject.otherCAD/CAM
dc.subject.otherAbutment fatigue
dc.subject.otherstepwise
dc.titleFatigue Failure Load of Lithium Disilicate Restorations Cemented on a Chairside Titanium‐Base
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152519/1/jopr12911_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152519/2/jopr12911.pdf
dc.identifier.doi10.1111/jopr.12911
dc.identifier.sourceJournal of Prosthodontics
dc.identifier.citedreferenceInternational Organization for Standardization (ISO). Dentistry‐Implants‐Dynamic Fatigue Test for Endosseous Dental Implants; ISO 14801:2007; ISO: Geneva, Switzerland, 2007
dc.identifier.citedreferenceWadhwani C, Rapoport D, La Rosa S, et al: Radiographic detection and characteristic patterns of residual excess cement associated with cement‐retained implant restorations: A clinical report. J Prosthet Dent 2012; 107: 151 ‐ 157
dc.identifier.citedreferenceKapos T, Evans C: CAD/CAM technology for implant abutments, crowns, and superstructures. Int J Oral Maxillofac Implants 2014;29 Suppl:117‐136
dc.identifier.citedreferenceFerrari M, Vichi A, Zarone F: Zirconia abutments and restorations: from laboratory to clinical investigations. Dent Mater 2015; 31: e63 ‐ 76
dc.identifier.citedreferenceMarchack CB: A custom titanium abutment for the anterior single‐tooth implant. J Prosthet Dent 1996; 76: 288 ‐ 291
dc.identifier.citedreferenceJoda T, Bürki A, Bethge S, et al: Stiffness, strength, and failure modes of implant‐supported monolithic lithium disilicate crowns: influence of titanium and zirconia abutments. Int J Oral Maxillofac Implants 2015; 30: 1272 ‐ 1279
dc.identifier.citedreferenceKurbad A, Kurbad S: CAD/CAM‐based implant abutments. Int J Comput Dent 2013; 16: 125 ‐ 141
dc.identifier.citedreferenceElsayed A, Wille S, Al‐Akhali M, et al: Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res 2018; 29: 20 ‐ 27
dc.identifier.citedreferenceAbbo B, Razzoog ME, Vivas J, et al: Resistance to dislodgement of zirconia copings cemented onto titanium abutments of different heights. J Prosthet Dent 2008; 99: 25 ‐ 29
dc.identifier.citedreferenceLin WS, Harris BT, Zandinejad A, et al: Use of prefabricated titanium abutments and customized anatomic lithium disilicate structures for cement‐retained implant restorations in the esthetic zone. J Prosthet Dent 2014; 111: 181 ‐ 185
dc.identifier.citedreferenceMühlemann S, Truninger TC, Stawarczyk B, et al: Bending moments of zirconia and titanium implant abutments supporting all‐ceramic crowns after aging. Clin Oral Implants Res 2014; 25: 74 ‐ 81
dc.identifier.citedreferenceStimmelmayr M, Sagerer S, Erdelt K, et al: In vitro fatigue and fracture strength testing of one‐piece zirconia implant abutments and zirconia implant abutments connected to titanium cores. Int J Oral Maxillofac Implants 2013; 28: 488 ‐ 493
dc.identifier.citedreferenceFoong JK, Judge RB, Palamara JE, et al: Fracture resistance of titanium and zirconia abutments: an in vitro study. J Prosthet Dent 2013; 109: 304 ‐ 312
dc.identifier.citedreferenceStimmelmayr M, Edelhoff D, Güth JF, et al: Wear at the titanium‐titanium and the titanium‐zirconia implant‐abutment interface: a comparative in vitro study. Dent Mater 2012; 28: 1215 ‐ 1220
dc.identifier.citedreferenceYilmaz B, Salaita LG, Seidt JD, et al: Load to failure of different zirconia abutments for an internal hexagon implant. J Prosthet Dent 2015; 114: 373 ‐ 377
dc.identifier.citedreferenceAtt W, Yajima ND, Wolkewitz M, et al: Influence of preparation and wall thickness on the resistance to fracture of zirconia implant abutments. Clin Implant Dent Relat Res 2012;14(Suppl 1): e196 ‐ 203
dc.identifier.citedreferenceKelly JR, Rungruanganunt P, Hunter B, et al: Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent 2010; 104: 228 ‐ 238
dc.identifier.citedreferenceLee CK, Karl M, Kelly JR: Evaluation of test protocol variables for dental implant fatigue research. Dent Mater 2009; 25: 1419 ‐ 1425
dc.identifier.citedreferenceFraga S, Pereira GKR, Freitas M, et al: Loading frequencies up to 20Hz as an alternative to accelerate fatigue strength tests in a Y‐TZP ceramic. J Mech Behav Biomed Mater 2016; 61: 79 ‐ 86
dc.identifier.citedreferenceMagne P, Schlichting LH, Maia HP, et al: In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent 2010; 104: 149 ‐ 157
dc.identifier.citedreferenceElsayed A, Wille S, Al‐Akhali M, et al: Comparison of fracture strength and failure mode of different ceramic implant abutments. J Prosthet Dent 2017; 117: 499 ‐ 506
dc.identifier.citedreferenceCosta AK, Borges AL, Fleming GJ, et al: The strength of sintered and adhesively bonded zirconia/veneer‐ceramic bilayers. J Dent 2014; 42: 1269 ‐ 1276
dc.identifier.citedreferenceCosta AK, Kelly RD, Fleming GJ, et al: Laminated ceramics with elastic interfaces: a mechanical advantage? J Dent 2015; 43: 335 ‐ 341
dc.identifier.citedreferenceLuangruangrong P, Cook NB, Sabrah AH, et al: Influence of full‐contour zirconia surface roughness on wear of glass‐ceramics. J Prosthodont 2014; 23: 198 ‐ 205
dc.identifier.citedreferenceGibbs CH, Mahan PE, Lundeen HC, et al: Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 1981; 46: 443 ‐ 449
dc.identifier.citedreferenceGibbs CH, Mahan PE, Mauderli A, et al: Limits of human bite strength. J Prosthet Dent 1986; 56: 226 ‐ 229
dc.identifier.citedreferenceHaraldson T, Carlsson GE, Ingervall B: Functional state, bite force and postural muscle activity in patients with osseointegrated oral implant bridges. Acta Odontol Scand 1979; 37: 195 ‐ 206
dc.identifier.citedreferenceRocca GT, Sedlakova P, Saratti CM, et al: Fatigue behavior of resin‐modified monolithic CAD‐CAM RNC crowns and endocrowns. Dent Mater 2016; 32: e338 ‐ e350
dc.identifier.citedreferenceCampos F, Valandro LF, Feitosa SA, et al: Adhesive cementation promotes higher fatigue resistance to zirconia crowns. Oper Dent 2017; 42: 215 ‐ 224
dc.identifier.citedreferenceAdell R, Lekholm U, Rockler B, et al: A 15‐year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981; 10: 387 ‐ 416
dc.identifier.citedreferenceden Hartog L, Slater JJ, Vissink A, et al: Treatment outcome of immediate, early and conventional single‐tooth implants in the aesthetic zone: a systematic review to survival, bone level, soft‐tissue, aesthetics and patient satisfaction. J Clin Periodontol 2008; 35: 1073 ‐ 1086
dc.identifier.citedreferencePjetursson BE, Tan K, Lang NP, et al: A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 2004; 15: 654 ‐ 666
dc.identifier.citedreferenceJung RE, Pjetursson BE, Glauser R, et al: A systematic review of the 5‐year survival and complication rates of implant‐supported single crowns. Clin Oral Implants Res 2008; 19: 119 ‐ 130
dc.identifier.citedreferenceJung RE, Sailer I, Hämmerle CH, et al: In vitro color changes of soft tissues caused by restorative materials. Int J Periodontics Restorative Dent 2007; 27: 251 ‐ 257
dc.identifier.citedreferenceSailer I, Zembic A, Jung RE, et al: Single‐tooth implant reconstructions: esthetic factors influencing the decision between titanium and zirconia abutments in anterior regions. Eur J Esthet Dent 2007; 2: 296 ‐ 310
dc.identifier.citedreferenceBelser UC, Grütter L, Vailati F, et al: Outcome evaluation of early placed maxillary anterior single‐tooth implants using objective esthetic criteria: a cross‐sectional, retrospective study in 45 patients with a 2‐ to 4‐year follow‐up using pink and white esthetic scores. J Periodontol 2009; 80: 140 ‐ 151
dc.identifier.citedreferenceFürhauser R, Florescu D, Benesch T, et al: Evaluation of soft tissue around single‐tooth implant crowns: the pink esthetic score. Clin Oral Implants Res 2005; 16: 639 ‐ 644
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.