Show simple item record

Safety surveillance and the estimation of risk in select populations: Flexible methods to control for confounding while targeting marginal comparisons via standardization

dc.contributor.authorShi, Xu
dc.contributor.authorWellman, Robert
dc.contributor.authorHeagerty, Patrick J.
dc.contributor.authorNelson, Jennifer C.
dc.contributor.authorCook, Andrea J.
dc.date.accessioned2020-01-13T15:04:56Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-01-13T15:04:56Z
dc.date.issued2020-02-20
dc.identifier.citationShi, Xu; Wellman, Robert; Heagerty, Patrick J.; Nelson, Jennifer C.; Cook, Andrea J. (2020). "Safety surveillance and the estimation of risk in select populations: Flexible methods to control for confounding while targeting marginal comparisons via standardization." Statistics in Medicine 39(4): 369-386.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/152565
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherelectronic health records
dc.subject.otherrare adverse event
dc.subject.otherpharmacosurveillance
dc.subject.othercausal inference
dc.subject.otherpropensity score
dc.titleSafety surveillance and the estimation of risk in select populations: Flexible methods to control for confounding while targeting marginal comparisons via standardization
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152565/1/sim8410_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152565/2/sim8410.pdf
dc.identifier.doi10.1002/sim.8410
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceHahn J, Ridder G. Asymptotic variance of semiparametric estimators with generated regressors. Econometrica. 2013; 81 ( 1 ): 315 ‐ 340.
dc.identifier.citedreferenceDe Boor C. A practical guide to splines. In: Applied Mathematical Sciences. Vol  27. New York, NY: Springer; 1978.
dc.identifier.citedreferenceDe Boor C. On calculating with B‐splines. J Approx Theory. 1972; 6: 50 ‐ 62.
dc.identifier.citedreferenceHansen BE. The integrated mean squared error of series regression and a Rosenthal Hilbert‐space inequality. Econometric Theory. 2015; 31 ( 2 ): 337 ‐ 361.
dc.identifier.citedreferenceLocalio AR, Margolis DJ, Berlin JA. Relative risks and confidence intervals were easily computed indirectly from multivariable logistic regression. J Clin Epidemiol. 2007; 60 ( 9 ): 874 ‐ 882.
dc.identifier.citedreferenceGreenland S. Introduction to Regression Modelling. Chapter 21. In: Rothman KJ, Greenland S, Lash TL, eds. Introduction to Regression Modelling. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.
dc.identifier.citedreferenceGruber S, van der Laan MJ. TMLE: an R package for targeted maximum likelihood estimation. Journal of Statistical Software. 2012; 51 ( 13 ).
dc.identifier.citedreferenceVan der Vaart AW. On differentiable functionals. Ann Stat. 1991; 19: 178 ‐ 204.
dc.identifier.citedreferenceNewey WK. The asymptotic variance of semiparametric estimators. Econometrica. 1994; 62 ( 6 ): 1349 ‐ 1382.
dc.identifier.citedreferenceVan der Vaart AW. Asymptotic Statistics. Vol  3. Cambridge, UK: Cambridge University Press; 1998.
dc.identifier.citedreferenceFranklin JM, Eddings W, Austin PC, Stuart EA, Schneeweiss S. Comparing the performance of propensity score methods in healthcare database studies with rare outcomes. Statis Med. 2017; 36 ( 12 ): 1946 ‐ 1963.
dc.identifier.citedreferenceHampel FR. The influence curve and its role in robust estimation. J Am Stat Assoc. 1974; 69 ( 346 ): 383 ‐ 393.
dc.identifier.citedreferenceBehrman RE, Benner JS, Brown JS, McClellan M, Woodcock J, Platt R. Developing the Sentinel System–a national resource for evidence development. N Engl J Med. 2011; 364 ( 6 ): 498 ‐ 499.
dc.identifier.citedreferenceHärdle W. Applied Nonparametric Regression. Cambridge, UK: Cambridge University Press; 1990.
dc.identifier.citedreferenceRosenbaum PR, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983; 70 ( 1 ): 41 ‐ 55.
dc.identifier.citedreferenceRobins J. A new approach to causal inference in mortality studies with a sustained exposure period–application to control of the healthy worker survivor effect. Mathematical Modelling. 1986; 7 ( 9‐12 ): 1393 ‐ 1512.
dc.identifier.citedreferenceSnowden JM, Rose S, Mortimer KM. Implementation of G‐computation on a simulated data set: demonstration of a causal inference technique. Am J Epidemiol. 2011; 173 ( 7 ): 731 ‐ 738.
dc.identifier.citedreferenceVansteelandt S, Keiding N. Invited commentary: G‐computation–lost in translation? Am J Epidemiol. 2011; 173 ( 7 ): 739 ‐ 742.
dc.identifier.citedreferenceAustin PC, Grootendorst P, Normand S‐LT, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statis Med. 2007; 26 ( 4 ): 754 ‐ 768.
dc.identifier.citedreferenceAustin PC. The performance of different propensity score methods for estimating marginal odds ratios. Statis Med. 2007; 26 ( 16 ): 3078 ‐ 3094.
dc.identifier.citedreferenceRobins JM, Rotnitzky A. Comment on “Inference for semiparametric models: Some questions and an answer” by P.J. Bickel and J. Kwon. Statistica Sinica. 2001; 11: 920 ‐ 936.
dc.identifier.citedreferenceHade EM, Lu B. Bias associated with using the estimated propensity score as a regression covariate. Statis Med. 2014; 33 ( 1 ): 74 ‐ 87.
dc.identifier.citedreferenceVansteelandt S, Daniel RM. On regression adjustment for the propensity score. Statis Med. 2014; 33 ( 23 ): 4053 ‐ 4072.
dc.identifier.citedreferenceWan F, Mitra N. An evaluation of bias in propensity score‐adjusted non‐linear regression models. Stat Methods Med Res. 2016; 27 ( 3 ): 846 ‐ 862.
dc.identifier.citedreferenceLittle R, An H. Robust likelihood‐based analysis of multivariate data with missing values. Statistica Sinica. 2004; 14: 949 ‐ 968.
dc.identifier.citedreferenceGutman R, Rubin D. Estimation of causal effects of binary treatments in unconfounded studies. Statis Med. 2015; 34 ( 26 ): 3381 ‐ 3398.
dc.identifier.citedreferenceSchafer JL, Kang J. Average causal effects from nonrandomized studies: a practical guide and simulated example. Psychological Methods. 2008; 13 ( 4 ): 279.
dc.identifier.citedreferenceMyers JA, Louis TA. Comparing treatments via the propensity score: stratification or modeling? Health Serv Outcomes Res Methodol. 2012; 12 ( 1 ): 29 ‐ 43.
dc.identifier.citedreferenceTsiatis A. Semiparametric Theory and Missing Data. New York, NY: Springer Science+Business Media; 2007.
dc.identifier.citedreferenceHahn J, Ridder G. The asymptotic variance of semi‐parametric estimators with generated regressors. Centre for Microdata Methods and Practice, Institute for Fiscal Studies; 2010.
dc.identifier.citedreferenceHahn J, Liao Z, Ridder G. Nonparametric two‐step sieve M estimation and inference. Econometric Theory. 2018; 34 ( 6 ): 1281 ‐ 1324.
dc.identifier.citedreferenceRobins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000; 11 ( 5 ): 550 ‐ 560.
dc.identifier.citedreferencePotter FJ. A study of procedures to identify and trim extreme sampling weights. In: Proceedings of the American Statistical Association, Section on Survey Research Methods. Washington, DC: American Statistical Association; 1990: 225 ‐ 230.
dc.identifier.citedreferencePotter FJ. The effect of weight trimming on nonlinear survey estimates. In: Proceedings of the American Statistical Association, Section on Survey Research Methods. Washington, DC: American Statistical Association; 1993: 758 ‐ 763.
dc.identifier.citedreferenceRobins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc. 1994; 89 ( 427 ): 846 ‐ 866.
dc.identifier.citedreferenceBang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics. 2005; 61 ( 4 ): 962 ‐ 973.
dc.identifier.citedreferencevan der Laan MJ, Rubin D. Targeted maximum likelihood learning. Int J Biostat. 2006; 2 ( 1 ).
dc.identifier.citedreferencevan der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007; 6 ( 1 ).
dc.identifier.citedreferenceNelson JC, Boudreau D, Wellman R, et al. Improving sequential safety surveillance planning methods for routine assessments that use regression adjustment or weighting to control confounding. Mini‐Sentinel Methods Report; 2016. https://www.sentinelsystem.org/sentinel/methods/routine-prospective-safety-surveillance-new-drugs-vaccines-and-other-biologic/
dc.identifier.citedreferenceFranklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Comput Stat Data Anal. 2014; 72: 219 ‐ 226.
dc.identifier.citedreferenceCook AJ, Wellman R, Shoaibi A, et al. Safety signalling methods for survival outcomes to control for confounding in the mini‐sentinel distributed database. FDA’s Sentinel Initiative: Project Report; 2018. https://www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_Methods_Survival_Outcomes_II_Final_Report.pdf
dc.identifier.citedreferenceRoujeau JC, Stern RS. Severe adverse cutaneous reactions to drugs. N Engl J Med. 1994; 331 ( 19 ): 1272 ‐ 1285.
dc.identifier.citedreferenceImai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc Ser B Stat Methodol. 2014; 76 ( 1 ): 243 ‐ 263.
dc.identifier.citedreferenceHastie T, Tibshirani R. Varying‐coefficient models. J R Stat Soc Ser B Methodol. 1993; 55: 757 ‐ 796.
dc.identifier.citedreferenceHärdle W, Liang H, Gao J. Partially Linear Models. Heidelberg, Germany: Springer Science+Business Media; 2012.
dc.identifier.citedreferenceHansen BE. Nonparametric sieve regression: Least squares, averaging least squares, and cross‐validation. In: Racine JS, Su L, Ullah A, eds. Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics. Oxford, UK: Oxford University Press; 2014.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.