Show simple item record

Production of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout)

dc.contributor.authorMortensen, Richard
dc.date.accessioned2020-01-13T15:05:06Z
dc.date.available2020-01-13T15:05:06Z
dc.date.issued2011-04
dc.identifier.citationMortensen, Richard (2011). "Production of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout)." Current Protocols in Neuroscience 55(1): 4.30.1-4.30.12.
dc.identifier.issn1934-8584
dc.identifier.issn1934-8576
dc.identifier.urihttps://hdl.handle.net/2027.42/152573
dc.description.abstractGene targeting by homologous recombination is a powerful and widely used technique for introduction of specific gene mutations (frequently a gene inactivation) in transgenic animals. The basic method detailed in this unit uses sequences homologous to the endogenous gene flanking the mutation. While methods using bacterial artificial chromosomes (BACs) and recombineering may be used, in most cases simpler bacterial plasmid clones with several kb of homology are sufficient. This protocol details the strategic factors in designing the constructs for selection and screening for homologous recombination. Curr. Protoc. Neurosci. 55:4.30.1‐4.30.12. © 2011 by John Wiley & Sons, Inc.
dc.publisherIRL Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermutation
dc.subject.otherheterozygous mouse
dc.subject.otherhomologous recombination
dc.subject.othersingle knockout
dc.titleProduction of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152573/1/cpns0430.pdf
dc.identifier.doi10.1002/0471142301.ns0430s55
dc.identifier.sourceCurrent Protocols in Neuroscience
dc.identifier.citedreferenceBrown, T. 1999. Southern blotting. Curr. Protoc. Mol. Biol. 68: 2.9.1 ‐ 2.9.20.
dc.identifier.citedreferenceBradley, A., Evans, M., Kaufman, M.H., and Robertson, E. 1984. Formation of germ‐line chimaeras from embryo‐derived teratocarcinoma cell lines. Nature 309: 255 ‐ 256.
dc.identifier.citedreferenceBrown, T. 1993. Hybridization analysis of DNA blots. Curr. Protoc. Mol. Biol. 21: 2.10.1 ‐ 2.10.16.
dc.identifier.citedreferenceThomas, K.R., Deng, C., and Capecchi, M.R. 1992. High‐fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol. 12: 2919 ‐ 2923.
dc.identifier.citedreferenceteRiele, H., Maandag, E.R., and Berns, A. 1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. U.S.A. 89: 5128 ‐ 5132.
dc.identifier.citedreferenceStruhl, K. 1987. Subcloning of DNA fragments. Curr. Protoc. Mol. Biol. 13: 3.16.1 ‐ 3.16.2.
dc.identifier.citedreferenceSmithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A., and Kucherlapati, R.S. 1985. Insertion of DNA sequences into the human chromosomal beta‐globin locus by homologous recombination. Nature 317: 230 ‐ 234.
dc.identifier.citedreferenceYenofsky, R.L., Fine, M., and Pellow, J.W. 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. U.S.A. 87: 3435 ‐ 3439.
dc.identifier.citedreferenceZheng, H. and Wilson, J.H. 1990. Gene targeting in normal and amplified cell lines. Nature 344: 170 ‐ 173.
dc.identifier.citedreferenceRobertson, E.J. 1987. Embryo derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach ( E.J. Robertson, ed.)pp. 71 ‐ 112. IRL Press, Oxford and New York.
dc.identifier.citedreferenceMortensen, R. 2006. Overview of gene targeting by homologous recombination. Curr. Protoc. Mol. Biol. 76: 23.1.1 ‐ 23.1.12.
dc.identifier.citedreferenceMilstone, D.S., Bradwin, G., and Mortensen, R.M. 1999. Simultaneous Cre catalyzed recombination of two alleles to restore neomycin sensitivity and facilitate homozygous mutations. Nucleic Acids Res. 27: e10.
dc.identifier.citedreferenceWong, E.A. and Capecchi, M.R. 1987. Homologous recombination between coinjected DNA sequences peaks in early to mid‐S phase. Mol. Cell. Biol. 7: 2294 ‐ 2295.
dc.identifier.citedreferenceThomason, L., Court, D.L., Bubunenko, M., Costantino, N., Wilson, H., Datta, S. and Oppenheim, A. 2007. Recombineering: Genetic engineering in bacteria using homologous recombination. Curr. Protoc. Mol. Biol. 78: 1.16.1 ‐ 1.16.24.
dc.identifier.citedreferenceMartin, G.R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U.S.A. 78: 7634 ‐ 7638.
dc.identifier.citedreferenceKramer, M.F. and Coen, D.M. 2001. Enzymatic amplification of DNA by PCR: Standard procedures and optimization. Curr Protoc. Mol. Biol. 56: 15.1.1 ‐ 15.1.14.
dc.identifier.citedreferenceKoller, B.H., Kim, H.‐S., Latour, A.M., Brigman, K., Boucher, R.C. Jr., Scambler, P., Wainwright, B., and Smithies, O. 1991. Toward an animal model of cystic fibrosis: Targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 88: 10730 ‐ 10734.
dc.identifier.citedreferenceJeong, Y. and Epstein, D.J. 2005. Modification and production of BAC transgenes. Curr. Protoc. Mol. Biol. 71: 23.11.1 ‐ 23.11.15.
dc.identifier.citedreferenceHasty, P., Rivera, P.J., and Bradley, A. 1991. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11: 5586 ‐ 5591.
dc.identifier.citedreferenceFolger, K.R., Wong, E.A., Wahl, G., and Capecchi, M.R. 1982. Patterns of integration of DNA microinjected into cultured mammalian cells: Evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2: 1372 ‐ 1387.
dc.identifier.citedreferenceEvans, M.J. and Kaufman, M.H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154 ‐ 156.
dc.identifier.citedreferenceEdmondson, D.G. and Roth, S.Y. 2001. Identification of protein interactions by far western analysis. Curr. Protoc. Mol. Biol. 55: 20.6.1 ‐ 20.6.10.
dc.identifier.citedreferenceDeng, C. and Capecchi, M.R. 1992. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12: 3365 ‐ 3371.
dc.identifier.citedreferenceConner, D.A. 2000b. Mouse embryonic stem (ES) cell culture. Curr. Protoc. Mol. Biol. 51: 23.3.1 ‐ 23.3.6.
dc.identifier.citedreferenceConner, D.A. 2000a. Mouse embryo fibroblast (MEF) feeder cell preparation. Curr. Protoc. Mol. Biol. 51: 23.2.1 ‐ 23.2.7.
dc.identifier.citedreferenceCheng, S., Fockler, C., Barnes, W., and Higuchi, R. 1994. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. U.S.A. 91: 5695 ‐ 5699.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.