Show simple item record

Importance of Ambipolar Electric Field in Driving Ion Loss From Mars: Results From a Multifluid MHD Model With the Electron Pressure Equation Included

dc.contributor.authorMa, Y. J.
dc.contributor.authorDong, C. F.
dc.contributor.authorToth, G.
dc.contributor.authorHolst, B.
dc.contributor.authorNagy, A. F.
dc.contributor.authorRussell, C. T.
dc.contributor.authorBougher, S.
dc.contributor.authorFang, Xiaohua
dc.contributor.authorHalekas, J. S.
dc.contributor.authorEspley, J. R.
dc.contributor.authorMahaffy, P. R.
dc.contributor.authorBenna, M.
dc.contributor.authorMcFadden, J.
dc.contributor.authorJakosky, B. M.
dc.date.accessioned2020-01-13T15:05:08Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:05:08Z
dc.date.issued2019-11
dc.identifier.citationMa, Y. J.; Dong, C. F.; Toth, G.; Holst, B.; Nagy, A. F.; Russell, C. T.; Bougher, S.; Fang, Xiaohua; Halekas, J. S.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J.; Jakosky, B. M. (2019). "Importance of Ambipolar Electric Field in Driving Ion Loss From Mars: Results From a Multifluid MHD Model With the Electron Pressure Equation Included." Journal of Geophysical Research: Space Physics 124(11): 9040-9057.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/152574
dc.description.abstractThe multifluid (MF) magnetohydrodynamic model of Mars is improved by solving an additional electron pressure equation. Through the electron pressure equation, the electron temperature is calculated based on the effects from various electron‐related heating and cooling processes (e.g., photoelectron heating, electron‐neutral collision, and electron‐ion collision), and thus, the improved model can calculate the electron temperature and the electron pressure force terms self‐consistently. Model results of a typical case using the MF with electron pressure equation included model are compared in detail to identical cases using the MF and multispecies models to identify the effect of the improved physics. We find that when the electron pressure equation is included, the general interaction patterns are similar to those with no electron pressure equation. However, the MF with electron pressure equation included model predicts that the electron temperature is much larger than the ion temperature in the ionosphere, consistent with both Viking and Mars Atmosphere and Volatile EvolutioN (MAVEN) observations. Using our numerical model, we also examined in detail the relative importance of different forces in the plasma interaction region. All three models are also applied to a MAVEN event study using identical input conditions; overall, the improved model matches best with MAVEN observations. All of the simulation cases are examined in terms of the total ion loss, and the results show that the inclusion of the electron pressure equation increases the escape rates by 50–110% in total mass, depending on solar condition and strong crustal field orientation, clearly demonstrating the importance of the ambipolar electric field in facilitating ion escape.Key PointsFor the first time, the effect of the ambipolar electric field is self‐consistently included in the global multifluid MHD modelThe ambipolar electric field plays a significant role in driving ion loss from Mars. The ion mass loss can be enhanced by more than 50%The improved model matches best with MAVEN observations in comparison with previous models
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherion loss
dc.subject.otherambipolar electric field
dc.subject.othermultifluid MHD
dc.subject.otherMars
dc.subject.otherelectron energy equation
dc.titleImportance of Ambipolar Electric Field in Driving Ion Loss From Mars: Results From a Multifluid MHD Model With the Electron Pressure Equation Included
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152574/1/jgra55307-sup-0001-2019JA027091-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152574/2/jgra55307_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152574/3/jgra55307.pdf
dc.identifier.doi10.1029/2019JA027091
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMcFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., Tiu, C., Gordon, D., Heavner, S., Robinson, M., Marckwordt, M., Lin, R., & Jakosky, B. ( 2015 ). MAVEN SupraThermal and thermal ion composition (STATIC) instrument. Space Science Reviews, 195 ( 1‐4 ), 199 – 256. https://doi.org/10.1007/s11214‐015‐0175‐6
dc.identifier.citedreferenceFränz, M., Dubinin, E., Nielsen, E., Woch, J., Barabash, S., Lundin, R., & Fedorov, A. ( 2010 ). Transterminator ion flow in the Martian ionosphere. Planetary and Space Science, 58 ( 1 ), 1442 – 1454. https://doi.org/10.1016/j.pss.2010.06.009
dc.identifier.citedreferenceGanguli, S. B. ( 1996 ). The polar wind. Reviews of Geophysics, 34 ( 3 ), 311 – 348. https://doi.org/10.1029/96RG00497
dc.identifier.citedreferenceGruesbeck, J. R., Espley, J. R., Connerney, J. E. P., DiBraccio, G. A., Soobiah, Y. I., Brain, D., Mazelle, C., Dann, J., Halekas, J., & Mitchell, D. L. ( 2018 ). The three‐dimensional bow shock of Mars as observed by MAVEN. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1029/2018JA025366
dc.identifier.citedreferenceHalekas, J., Taylor, E., Dalton, G., Johnson, G., Curtis, D., McFadden, J., Mitchell, D. L., Lin, R. P., & Jakosky, B. M. ( 2015 ). The solar wind ion analyzer for MAVEN. Space Science Reviews, 195, 125 – 151. https://doi.org/10.1007/s11214‐013‐0029‐z
dc.identifier.citedreferenceHalekas, J. S., Brain, D. A., Luhmann, J. G., DiBraccio, G. A., Ruhunusiri, S., Harada, Y., Fowler, C. M., Mitchell, D. L., Connerney, J. E. P., Espley, J. R., Mazelle, C., & Jakosky, B. M. ( 2017 ). Flows, fields, and forces in the Mars‐solar wind interaction. Journal of Geophysical Research: Space Physics, 122, 11,320 – 11,341. https://doi.org/10.1002/2017JA024772
dc.identifier.citedreferenceHalekas, J. S., McFadden, J. P., Brain, D. A., Luhmann, J. G., DiBraccio, G. A., Connerney, J. E. P., Mitchell, D. L., & Jakosky, B. M. ( 2018 ). Structure and variability of the Martian ion composition boundary layer. Journal of Geophysical Research: Space Physics, 123, 8439 – 8458. https://doi.org/10.1029/2018JA025866
dc.identifier.citedreferenceJakosky, B. M., Lin, R., Grebowsky, J., Luhmann, J., Mitchell, D., & Beutelschies, G. ( 2015 ). The Mars atmosphere and volatile EvolutioN (MAVEN) mission. Space Science Reviews, 195 ( 1‐4 ), 3 – 48. https://doi.org/10.1007/s11214‐015‐0221‐4
dc.identifier.citedreferenceKallio, E., Liu, K., Jarvinen, R., Pohjola, V., & Janhunen, P. ( 2010 ). Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions. Icarus, 206, 152 – 163. https://doi.org/10.1016/j.icarus.2009.05.015
dc.identifier.citedreferenceLundin, R., Barabash, S., Holmström, M., Nilsson, H., Yamauchi, M., Fraenz, M., & Dubini, E. M. ( 2008 ). A comet‐like escape of ionospheric plasma from Mars. Geophysical Research Letters, 35, L18203. https://doi.org/10.1029/2008GL034811
dc.identifier.citedreferenceLundin, R., Zakharov, A., Pellinen, R., Barabasj, S. W., Borg, H., Dubinin, E. M., Hultqvist, B., Koskinen, H., Liede, I., & Pissarenko, N. ( 1990 ). ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere. Geophysical Research Letters, 17, 873 – 876. https://doi.org/10.1029/GL017i006p00873
dc.identifier.citedreferenceMa, Y., Nagy, A. F., Sokolov, I. V., & Hansen, K. C. ( 2004 ). Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. Journal of Geophysical Research, 109, A07211. https://doi.org/10.1029/2003JA010367
dc.identifier.citedreferenceMa, Y. J., Russell, C. T., Nagy, A. F., Toth, G., Dougherty, M. K., Wellbrock, A., Coates, A. J., Garnier, P., Wahlund, J.‐E., Cravens, T. E., Richard, M. S., & Crary, F. J. ( 2011 ). The importance of thermal electron heating in Titan’s ionosphere: Comparison with Cassini T34 flyby. Journal of Geophysical Research, 116, A10213. https://doi.org/10.1029/2011JA016657
dc.identifier.citedreferenceMa, Y. J., Russell, C. T., Fang, X., Dong, Y., Nagy, A. F., Toth, G., Halekas, J. S., Connerney, J. E. P., Espley, J. R., Mahaffy, P. R., Benna, M., McFadden, J. P., Mitchell, D. L., & Jakosky, B. M. ( 2015 ). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 42, 9113 – 9120. https://doi.org/10.1002/2015GL065218
dc.identifier.citedreferenceMatta, M., Galand, M., Moore, L., Mendillo, M., & Withers, P. ( 2014 ). Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 227, 78 – 88. https://doi.org/10.1016/j.icarus.2013.09.006
dc.identifier.citedreferenceMitchell, D. L., Mazelle, C., Sauvaud, J.‐A., Thocaven, J.‐J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., Gordon, D., Robinson, M., Heavner, S., Turin, P., Diaz‐Aguado, M., Curtis, D. W., Lin, R. P., & Jakosky, B. M. ( 2016 ). The MAVEN solar wind electron analyzer. Space Science Reviews, 200 ( 1‐4 ), 495 – 528. https://doi.org/10.1007/s11214‐015‐0232‐1
dc.identifier.citedreferenceMitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H., & Ness, N. F. ( 2001 ). Probing Mars’ crustal magnetic field and ionosphere with the MGS electron Reflectometer. Journal of Geophysical Research, 106, 23419. https://doi.org/10.1029/2000je001435
dc.identifier.citedreferenceModolo, R., Hess, S., Mancini, M., Leblanc, F., Chaufray, J.‐Y., Brain, D., Leclercq, L., Esteban‐Hernández, R., Chanteur, G., Weill, P., González‐Galindo, F., Forget, F., Yagi, M., & Mazelle, C. ( 2016 ). Mars‐solar wind interaction: LatHyS, an improved parallel 3‐D multispecies hybrid model. Journal of Geophysical Research: Space Physics, 121, 6378 – 6399. https://doi.org/10.1002/2015JA022324
dc.identifier.citedreferenceMorschhauser, A., Lesur, V., & Grott, M. ( 2014 ). A spherical harmonic model of the lithospheric magnetic field of Mars. Journal of Geophysical Research: Planets, 119, 1162 – 1188. https://doi.org/10.1002/2013JE004555
dc.identifier.citedreferenceNagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, A., Dubinin, E., Verigin, M., Kotova, G., Axford, W. I., Bertucci, C., & Trotignon, J. G. ( 2004 ). The plasma environment of Mars. Space Science Reviews, 111, 33 – 114. https://doi.org/10.1023/b:spac.0000032718.47512.92
dc.identifier.citedreferenceNajib, D., Nagy, A. F., Tóth, G., & Ma, Y. ( 2011 ). Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. Journal of Geophysical Research, 116, A05204. https://doi.org/10.1029/2010JA016272
dc.identifier.citedreferenceNilsson, H., Edberg, N., Stenberg, G., & Barabash, S. ( 2011 ). Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus. https://doi.org/10.1016/j.icarus.2011.08.003
dc.identifier.citedreferenceRamstad, R., Futaana, Y., Barabash, S., Nilsson, H., del Campo, S. M., Lundin, B. R., & Schwingenschuh, K. ( 2013 ). Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum. Geophysical Research Letters, 40, 477 – 481. https://doi.org/10.1002/grl.50149
dc.identifier.citedreferenceSakai, S., Andersson, L., Cravens, T. E., Mitchell, D. L., Mazelle, C., Rahmati, A., Fowler, C. M., Bougher, S. W., Thiemann, E. M. B., Eparvier, F. G., Fontenla, J. M., Mahaffy, P. R., Connerney, J. E. P., & Jakosky, B. M. ( 2016 ). Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 121, 7049 – 7066. https://doi.org/10.1002/2016JA022782
dc.identifier.citedreferenceSchunk, R. W., & Nagy, A. F. ( 2009 ). Ionospheres: Physics, Plasma Physics, and Chemistry ( 2nd ed. ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceStrangeway, R. J., Ergun, R. E., Su, Y.‐J., Carlson, C. W., & Elphic, R. C. ( 2005 ). Factors controlling ionospheric outflows as observed at intermediate altitudes. Journal of Geophysical Research, 110, A03221. https://doi.org/10.1029/2004JA010829
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y.‐J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3, 1 February 2012), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceTrotignon, J. G., Mazelle, C., Bertucci, C., & Acuña, M. H. ( 2006 ). Martian shock and magnetic pile‐up boundary positions and shapes determined from the Phobos 2 and Mars global surveyor data sets. Planetary and Space Science, 54, 357 – 369. https://doi.org/10.1016/j.pss.2006.01.003
dc.identifier.citedreferenceVignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Reme, H., & Mazelle, C. ( 2002 ). Factors controlling the location of the Bow Shock at Mars. Geophysical Research Letters, 29 ( 9 ). https://doi.org/10.1029/2001GL014513
dc.identifier.citedreferenceVignes, D., Mazelle, C., Rme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D. L., Cloutier, P., Crider, D. H., & Ness, N. F. ( 2000 ). The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER experiment onboard mars global surveyor. Geophysical Research Letters, 27 ( 1 ), 49 – 52. https://doi.org/10.1029/1999GL010703
dc.identifier.citedreferenceWelling, D. T., André, M., Dandouras, I., Delcourt, D., Fazakerley, A., Fontaine, D., Foster, J., Ilie, R., Kistler, L., Lee, J. H., Liemohn, M. W., Slavin, J. A., Wang, C.‐P., Wiltberger, M., & Yau, A. ( 2015 ). The earth: Plasma sources, losses, and transport processes. Space Science Reviews, 192 ( 1‐4 ), 145 – 208. https://doi.org/10.1007/s11214‐015‐0187‐2
dc.identifier.citedreferenceXu, S., Liemohn, M. W., & Mitchell, D. L. ( 2014 ). Solar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fields. Journal of Geophysical Research: Space Physics, 119, 10,100 – 10,115. https://doi.org/10.1002/2014JA020363
dc.identifier.citedreferenceXu, S., Mitchell, D. L., McFadden, J. P., Collinson, G., Harada, Y., Lillis, R., Mazelle, C., & Connerney, J. E. P. ( 2018 ). Field‐aligned potentials at Mars from MAVEN observations. Geophysical Research Letters, 45, 10,119 – 10,127. https://doi.org/10.1029/2018GL080136
dc.identifier.citedreferenceYau, A. W., Abe, T., & Peterson, W. ( 2007 ). The polar wind: Recent observations. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 16 ), 1936 – 1983. https://doi.org/10.1016/j.jastp.2007.08.010 recent Advances in the Polar Wind Theories and Observations
dc.identifier.citedreferenceAcuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Mitchell, D., Reme, H., Mazelle, C., Sauvaud, J. A., d’Uston, C., Cros, A., Medale, J. L., Bauer, S. J., Cloutier, P., Mayhew, M., Winterhalter, D., & Ness, N. F. ( 1998 ). Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor Mission. Science, 279, 1676 – 1680. https://doi.org/10.1126/science.279.5357.1676
dc.identifier.citedreferenceAcuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., & Cloutier, P. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science, 284, 790 – 793. https://doi.org/10.1126/science.284.5415.790
dc.identifier.citedreferenceAndersson, L., Ergun, R. E., Delory, G. T., Eriksson, A., Westfall, J., Reed, H., McCauly, J., Summers, D., & Meyers, D. ( 2015 ). The Langmuir probe and waves (LPW) instrument for MAVEN. Space Science Reviews. https://doi.org/10.1007/s11214‐015‐0194‐3
dc.identifier.citedreferenceAxford, W. I. ( 1968 ). The polar wind and the terrestrial helium budget. Journal of Geophysical Research, 73 ( 21 ), 6855 – 6859. https://doi.org/10.1029/JA073i021p06855
dc.identifier.citedreferenceBanks, P. M., & Holzer, T. E. ( 1968 ). The polar wind. Journal of Geophysical Research, 73 ( 21 ), 6846 – 6854. https://doi.org/10.1029/JA073i021p06846
dc.identifier.citedreferenceBarabash, S., Fedorov, A., Lundin, R., & Sauvaud, J.‐A. ( 2007 ). Martian atmospheric erosion rates. Science, 315, 501. https://doi.org/10.1126/science.1134358
dc.identifier.citedreferenceBertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., & Vaisberg, O. ( 2011 ). The induced magnetospheres of Mars, Venus, and titan. Space Science Reviews, 162, 113. https://doi.org/10.1007/s11214‐011‐9845‐1
dc.identifier.citedreferenceBougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., & Elrod, M. ( 2017 ). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122, 1296 – 1313. https://doi.org/10.1002/2016JA023454
dc.identifier.citedreferenceBrain, D. A. ( 2006 ). Mars global surveyor measurements of the Martian solar wind interaction. Space Science Reviews, 126 ( January ), 77 – 112. https://doi.org/10.1007/s11214‐006‐9122‐x
dc.identifier.citedreferenceBrain, D., Barabash, S., Boesswetter, A., Bougher, S., Brecht, S., Chanteur, G., Hurley, D., Dubinin, E., Fang, X., Fraenz, M., Halekas, J., Harnett, E., Holmstrom, M., Kallio, E., Lammer, H., Ledvina, S., Liemohn, M., Liu, K., Luhmann, J., Ma, Y., Modolo, R., Nagy, A., Motschmann, U., Nilsson, H., Shinagawa, H., Simon, S., & Terada, N. ( 2010 ). A comparison of global models for the solar wind interaction with Mars. Icarus, 206 ( 1 ), 139 – 151. https://doi.org/10.1016/j.icarus.2009.06.030
dc.identifier.citedreferenceBrecht, S. H., & Ledvina, S. A. ( 2010 ). The loss of water from Mars: Numerical results and challenges. Icarus, 206 ( 1 ), 164 – 173. https://doi.org/10.1016/j.Icarus.2009.04.028
dc.identifier.citedreferenceBrecht, S. H., & Ledvina, S. A. ( 2014 ). The role of the Martian crustal magnetic fields in controlling ionospheric loss. Geophysical Research Letters, 41, 5340 – 5346. https://doi.org/10.1002/2014GL060841
dc.identifier.citedreferenceBrecht, S. H., Ledvina, S. A., & Bougher, S. W. ( 2016 ). Ionospheric loss from Mars as predicted by hybrid particle simulations. Journal of Geophysical Research: Space Physics, 121, 190 – 10,208. https://doi.org/10.1002/2016JA022548
dc.identifier.citedreferenceCollinson, G., Mitchell, D., Glocer, A., Grebowsky, J., Peterson, W. K., Connerney, J., Andersson, L., Espley, J., Mazelle, C., Sauvaud, J.‐A., Fedorov, A., Ma, Y., Bougher, S., Lillis, R., Ergun, R., & Jakosky, B. ( 2015 ). Electric Mars: The first direct measurement of an upper limit for the Martian “polar wind” electric potential. Geophysical Research Letters, 42, 9128 – 9134. https://doi.org/10.1002/2015GL065084
dc.identifier.citedreferenceCollinson, G., Mitchell, D., Xu, S., Glocer, A., Grebowsky, J., Hara, T., Lillis, R., Espley, J., Mazelle, C., Sauvaud, J., Fedorov, A., Liemohn, M., Andersson, L., & Jakosky, B. ( 2016 ). Electric Mars: A large trans‐terminator electric potential drop on closed magnetic field lines above utopia Planitia. Journal of Geophysical Research: Space Physics, 122, 2260 – 2271. https://doi.org/10.1002/2016JA023589
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J. R., DiBraccio, G. A., Gruesbeck, J. R., Oliversen, R. J., Mitchell, D. L., Halekas, J., Mazelle, C., Brain, D., & Jakosky, B. M. ( 2015 ). First results of the MAVEN magnetic field investigation. Geophysical Research Letters, 42, 8819 – 8827. https://doi.org/10.1002/2015GL065366
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J. R., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN magnetic field investigation. Space Science Reviews, 195 ( 1 ), 257 – 291. https://doi.org/10.1007/s11214‐015‐0169‐4
dc.identifier.citedreferenceCravens, T. E., Hamil, O., Houston, S., Bougher, S., Ma, Y., Brain, D., & Ledvina, S. ( 2017 ). Estimates of ionospheric transport and ion loss at Mars. Journal of Geophysical Research: Space Physics, 122, 10,626 – 10,637. https://doi.org/10.1002/2017JA024582
dc.identifier.citedreferenceCrider, D., Brain, D. A., Acuña, M., Vignes, D., Mazelle, C., & Bertucci, C. ( 2004 ). Mars global surveyor observations of solar wind magnetic field draping around Mars. Space Science Reviews, 111 ( 1/2 ), 203 – 221. https://doi.org/10.1023/B:SPAC.0000032714.66124.4e
dc.identifier.citedreferenceDalgarno, A. ( 1969 ). Inelastic collisions at low energies. Canadian Journal of Chemistry, 47, 1723 – 1729.
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Toth, G., Lee, Y., Nagy, A. F., Tenishev, V., Pawlowski, D. J., Combi, M. R., & Najib, D. ( 2015 ). Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research: Space Physics, 120, 7857 – 7872. https://doi.org/10.1002/2015JA020990
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., Curry, S. M., Harada, Y., Luhmann, J. G., & Jakosky, B. M. ( 2015 ). Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 42, 8942 – 8950. https://doi.org/10.1002/2015GL065346
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., Halekas, J. S., Mcfadden, J., Connerney, J. E. P., Jakosky, B. M., Vaisberg, O., & Zelenyi, L. ( 2018 ). Solar wind deflection by mass loading in the Martian magnetosheath based on MAVEN observations. Geophysical Research Letters, 45, 2574 – 2579. https://doi.org/10.1002/2017GL076813
dc.identifier.citedreferenceErgun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., & Jakosky, B. M. ( 2015 ). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophysical Research Letters, 42, 8846 – 8853. https://doi.org/10.1002/2015GL065280
dc.identifier.citedreferenceErgun, R. E., Andersson, L. A., Fowler, C. M., Woodson, A. K., Weber, T. D., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., Morooka, M. W., Stewart, A. I. F., Mahaffy, P. R., & Jakosky, B. M. ( 2016 ). Enhanced O 2 + loss at Mars due to an ambipolar electric field from electron heating. Journal of Geophysical Research: Space Physics, 121, 4668 – 4678. https://doi.org/10.1002/2016JA022349
dc.identifier.citedreferenceFang, X., Liemohn, M. W., Nagy, A. F., Ma, Y., De Zeeuw, D. L., Kozyra, J. U., & Zurbuchen, T. H. ( 2008 ). Pickup oxygen ion velocity space and spatial distribution around Mars. Journal of Geophysical Research, 113, A02210. https://doi.org/10.1029/2007JA012736
dc.identifier.citedreferenceFlynn, C. L., Vogt, M. F., Withers, P., Andersson, L., England, S., & Liu, G. ( 2017 ). MAVEN observations of the effects of crustal magnetic fields on electron density and temperature in the Martian dayside ionosphere. Geophysical Research Letters, 44, 10,812 – 10,821. https://doi.org/10.1002/2017GL075367
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.