Show simple item record

The Fe2(NO)2 Diamond Core: A Unique Structural Motif In Non‐Heme Iron–NO Chemistry

dc.contributor.authorDong, Hai T.
dc.contributor.authorSpeelman, Amy L.
dc.contributor.authorKozemchak, Claire E.
dc.contributor.authorSil, Debangsu
dc.contributor.authorKrebs, Carsten
dc.contributor.authorLehnert, Nicolai
dc.date.accessioned2020-01-13T15:05:22Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:05:22Z
dc.date.issued2019-12-02
dc.identifier.citationDong, Hai T.; Speelman, Amy L.; Kozemchak, Claire E.; Sil, Debangsu; Krebs, Carsten; Lehnert, Nicolai (2019). "The Fe2(NO)2 Diamond Core: A Unique Structural Motif In Non‐Heme Iron–NO Chemistry." Angewandte Chemie 131(49): 17859-17863.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/152586
dc.description.abstractNon‐heme high‐spin (hs) {FeNO}8 complexes have been proposed as important intermediates towards N2O formation in flavodiiron NO reductases (FNORs). Many hs‐{FeNO}8 complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non‐heme iron nitrosyl complex that is stabilized by an unexpected spin‐state change. Upon reduction of the hs‐{FeNO}7 complex, [Fe(TPA)(NO)(OTf)](OTf) (1), the N‐O stretching band vanishes, but no sign of DNIC or N2O formation is observed. Instead, the dimer, [Fe2(TPA)2(NO)2](OTf)2 (2) could be isolated and structurally characterized. We propose that 2 is formed from dimerization of the hs‐{FeNO}8 intermediate, followed by a spin state change of the iron centers to low‐spin (ls), and speculate that 2 models intermediates in hs‐{FeNO}8 complexes that precede the disproportionation reaction.Eine seltene Raute: Der hs‐{FeNO}7‐Komplex 1 wurde durch spektroskopische Methoden und Röntgenkristallographie charakterisiert. Unter reduzierenden Bedingungen wird das Dimer 2 mit rautenförmigem Kern durch Dimerisierung eines hs‐{FeNO}8‐Zwischenprodukts und anschließende Spinzustandsänderung der Eisenzentren zu Low‐Spin (ls) gebildet.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherStickstoffoxid
dc.subject.otherModellkomplexe
dc.subject.otherNicht-Häm-Eisenkomplexe
dc.subject.otherDinitrosyl-Eisenkomplexe
dc.titleThe Fe2(NO)2 Diamond Core: A Unique Structural Motif In Non‐Heme Iron–NO Chemistry
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152586/1/ange201911968_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152586/2/ange201911968-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152586/3/ange201911968.pdf
dc.identifier.doi10.1002/ange.201911968
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceM. Lee, P. Arosio, A. Cozzi, N. D. Chasteen, Biochemistry 1994, 33, 3679 – 3687.
dc.identifier.citedreferenceA. B. McQuarters, N. E. Wirgau, N. Lehnert, Curr. Opin. Chem. Biol. 2014, 19, 82 – 89;
dc.identifier.citedreferenceD. Bykov, F. Neese, Inorg. Chem. 2015, 54, 9303 – 9316.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. T. Dong, C. J. White, B. Zhang, C. Krebs, N. Lehnert, J. Am. Chem. Soc. 2018, 140, 13429 – 13440;
dc.identifier.citedreferenceC. J. White, A. L. Speelman, C. Kupper, S. Demeshko, F. Meyer, J. P. Shanahan, E. E. Alp, M. Hu, J. Zhao, N. Lehnert, J. Am. Chem. Soc. 2018, 140, 2562 – 2574.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Khatua, A. Majumdar, J. Inorg. Biochem. 2015, 142, 145 – 153;
dc.identifier.citedreferenceD. M. Kurtz, Jr., Dalton Trans. 2007, 4115 – 4121.
dc.identifier.citedreferenceA. M. Confer, A. C. McQuilken, H. Matsumura, P. Moënne-Loccoz, D. P. Goldberg, J. Am. Chem. Soc. 2017, 139, 10621 – 10624.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Kindermann, A. Schober, S. Demeshko, N. Lehnert, F. Meyer, Inorg. Chem. 2016, 55, 11538 – 11550;
dc.identifier.citedreferenceZ. J. Tonzetich, F. Héroguel, L. H. Do, S. J. Lippard, Inorg. Chem. 2011, 50, 1570 – 1579.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. R. Hickok, S. Sahni, H. Shen, A. Arvind, C. Antoniou, L. W. M. Fung, D. D. Thomas, Free Radical Biol. Med. 2011, 51, 1558 – 1566;
dc.identifier.citedreferenceH. Lewandowska, M. Kalinowska, K. Brzóska, K. Wójciuk, G. Wójciuk, M. Kruszewski, Dalton Trans. 2011, 40, 8273 – 8289.
dc.identifier.citedreferenceB. D’Autréaux, O. Horner, J.-L. Oddou, C. Jeandey, S. Gambarelli, C. Berthomieu, J.-M. Latour, I. Michaud-Soret, J. Am. Chem. Soc. 2004, 126, 6005 – 6016.
dc.identifier.citedreferenceM. Boese, P. I. Mordvintcev, A. F. Vanin, R. Busse, A. Mülsch, J. Biol. Chem. 1995, 270, 29244 – 29249.
dc.identifier.citedreferenceA. L. Speelman, C. J. White, B. Zhang, E. E. Alp, J. Zhao, M. Hu, C. Krebs, J. Penner-Hahn, N. Lehnert, J. Am. Chem. Soc. 2018, 140, 11341 – 11359.
dc.identifier.citedreferenceJ. Wang, C. Li, Q. Zhou, W. Wang, Y. Hou, B. Zhang, X. Wang, Dalton Trans. 2016, 45, 5439 – 5443.
dc.identifier.citedreferenceY. Zang, J. Kim, Y. Dong, E. C. Wilkinson, E. H. Appelman, L. Que Jr., J. Am. Chem. Soc. 1997, 119, 4197 – 4205.
dc.identifier.citedreferenceV. K. K. Praneeth, C. Näther, G. Peters, N. Lehnert, Inorg. Chem. 2006, 45, 2795 – 2811.
dc.identifier.citedreferenceJ. Li, A. Banerjee, P. L. Pawlak, W. W. Brennessel, F. A. Chavez, Inorg. Chem. 2014, 53, 5414 – 5416.
dc.identifier.citedreferenceT. C. Berto, M. B. Hoffman, Y. Murata, K. B. Landenberger, E. E. Alp, J. Zhao, N. Lehnert, J. Am. Chem. Soc. 2011, 133, 16714 – 16717.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. Fujisawa, S. Soma, H. Kurihara, H. T. Dong, M. Bilodeau, N. Lehnert, Dalton Trans. 2017, 46, 13273 – 13289;
dc.identifier.citedreferenceC. Van Stappen, N. Lehnert, Inorg. Chem. 2018, 57, 4252 – 4269.
dc.identifier.citedreferenceCCDC  1875658, 1875657, and 1895319 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. Ignarro, Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego, 2000;
dc.identifier.citedreferenceD. A. Wink, J. B. Mitchell, Free Radical Biol. Med. 1998, 25, 434 – 456;
dc.identifier.citedreferenceN. Lehnert, H. T. Dong, J. B. Harland, A. P. Hunt, C. J. White, Nat. Rev. Chem. 2018, 2, 278.
dc.identifier.citedreferenceD. J. Stuehr, S. S. Gross, I. Sakuma, R. Levi, C. F. Nathan, J. Exp. Med. 1989, 169, 1011.
dc.identifier.citedreferenceK. M. Miranda, Coord. Chem. Rev. 2005, 249, 433 – 455.
dc.identifier.citedreferenceR. Lin, P. J. Farmer, J. Am. Chem. Soc. 2000, 122, 2393 – 2394.
dc.identifier.citedreference 
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.