Show simple item record

Stepwise Solid‐Phase Synthesis of Nucleopeptides

dc.contributor.authorGrandas, Anna
dc.contributor.authorMarchán, Vicente
dc.contributor.authorDebéthune, Laurent
dc.contributor.authorPedroso, Enrique
dc.date.accessioned2020-01-13T15:05:23Z
dc.date.available2020-01-13T15:05:23Z
dc.date.issued2004-03
dc.identifier.citationGrandas, Anna; Marchán, Vicente ; Debéthune, Laurent ; Pedroso, Enrique (2004). "Stepwise Solid‐Phase Synthesis of Nucleopeptides." Current Protocols in Nucleic Acid Chemistry 16(1): 4.22.1-4.22.54.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/152587
dc.description.abstractPhosphodiester‐linked peptide‐oligonucleotide conjugates (nucleopeptides) are obtained by stepwise solid‐phase procedures. The peptide is first assembled on a suitably derivatized solid matrix and the oligonucleotide is subsequently elongated at the free hydroxyl group of the linking amino acid. Temporary acid‐labile and permanent base‐labile protecting groups are combined. Careful choice of the protection scheme is required to prevent and minimize side reactions that may degrade the target molecule.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.otherstepwise solid‐phase synthesis
dc.subject.otherpeptide‐oligonucleotide conjugates
dc.subject.otherprotecting groups
dc.subject.othernucleopeptides
dc.titleStepwise Solid‐Phase Synthesis of Nucleopeptides
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152587/1/cpnc0422.pdf
dc.identifier.doi10.1002/0471142700.nc0422s16
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceRobles, J., Pedroso, E., and Grandas, A. 1995. Solid‐phase synthesis of a nucleopeptide from the linking site of adenovirus‐2 nucleoprotein, ‐Ser(p 5 ‐CATCAT)‐Gly‐Asp‐. Convergent versus stepwise strategy. Nucl. Acids Res. 23: 4151 ‐ 4161.
dc.identifier.citedreferenceGómez‐Pinto, I., Marchán, V., Gago, F., Grandas, A., and González, C. 2003. Solution structure and stability of tryptophan‐containing nucleopeptide duplexes. ChemBiochem. 4: 40 ‐ 49.
dc.identifier.citedreferenceHo, W.C., Steinbeck, C., and Richert, C. 1999. Solution structure of the aminoacyl‐capped oligodeoxyribonucleotide duplex (W‐TGCGCAC) 2. Biochemistry 38: 12597 ‐ 12606.
dc.identifier.citedreferenceJeyaraj, D.A., Prinz, H.R., and Waldmann, H.R. 2002. Synthesis of nucleopeptides by employing an enzyme‐labile urethane protecting group. Chem. Eur. J. 8: 1879 ‐ 1887.
dc.identifier.citedreferenceKachalova, A.V., Stetsenko, D.A., Romanova, E.A., Tashlitsky, V.N., Gait, M.J., and Oretskaya, T.S. 2002. A new and efficient method for the synthesis of 5′‐conjugates of oligonucleotides through amide‐bond formation in solid phase. Helv. Chim. Acta 85: 2409 ‐ 2416.
dc.identifier.citedreferenceKaiser, E., Colescott, R.L., Bossinger, C.D., and Cook, P.I. 1970. Color test for detection of free amino groups in the solid‐phase synthesis of peptides. Anal. Biochem. 34: 595 ‐ 598.
dc.identifier.citedreferenceKuyl‐Yeheskiely, E., Tromp, C.M., Schaeffer, A.HR., van der Marel, G.A., and van Boom, J.H. 1987. A model study directed towards the preparation of nucleopeptides via H‐phosphonate intermediates. Nucl. Acids Res. 15: 1807 ‐ 1818.
dc.identifier.citedreferenceKuyl‐Yeheskiely, E., Dreef‐Tromp, C.M., Geluk, A., Marel, G.A., and van Boom, J.H. 1989. Synthesis of the nucleopeptide H‐Phe‐Tyr(pGC)‐NH 2 and H‐Phe‐Ser(pGC)‐Ala‐OH via a phosphotriester approach. Nucl. Acids Res. 17: 2897 ‐ 2905.
dc.identifier.citedreferenceMarchán, V., Rodríguez‐Tanty, C., Estrada, M., Pedroso, E., and Grandas, A. 2000. Alternative procedures for the synthesis of methionine‐containing peptide‐oligonucleotide hybrids. Eur. J. Org. Chem. 2495 ‐ 2500.
dc.identifier.citedreferenceMarchán, V., Moreno, V., Pedroso, E., and Grandas, A. 2001. Towards a better understanding of the cisplatin mode of action. Chem. Eur. J. 7: 808 ‐ 815.
dc.identifier.citedreferenceMcMinn, D.L. and Greenberg, M.M. 1999. Convergent solution‐phase synthesis of a nucleopeptide using a protected oligonucleotide. Bioorg. Med. Chem. Lett. 9: 547 ‐ 550.
dc.identifier.citedreferenceMontserrat, F.X., Grandas, A., Eritja, E., and Pedroso, E. 1994. Criteria for the economic large scale solid‐phase synthesis of oligonucleotides. Tetrahedron 50: 2617 ‐ 2622.
dc.identifier.citedreferenceOllivier, N., Olivier, C., Gouyette, C., Huynh‐Dinh, T., Gras‐Masse, H., and Melnyk, O. 2002. Synthesis of oligonucleotide‐peptide conjugates using hydrazone chemical ligation. Tetrahedron Lett. 43: 997 ‐ 999.
dc.identifier.citedreferenceRobles, J., Pedroso, E., and Grandas, A. 1991. Solid phase synthesis of a model nucleopeptide with a phosphodiester bond between the 5′ end of a trinucleotide and a serine residue. Tetrahedron Lett. 32: 4389 ‐ 4392.
dc.identifier.citedreferenceRobles, J., Maseda, M., Beltrán, M., Cocernau, M., Pedroso, E., and Grandas, A. 1997. Synthesis and enzymatic stability of phosphodiester‐linked peptide‐oligonucleotide hybrids. Bioconjugate Chem. 8: 785 ‐ 788.
dc.identifier.citedreferenceRobles, J., Beltrán, M., Marchán, V., Pérez, Y., Travesset, I., Pedroso, E., and Grandas, A. 1999. Towards nucleopeptides containing any trifunctional amino acid. Tetrahedron 55: 13251 ‐ 13264.
dc.identifier.citedreferenceSakakura, A. and Hayakawa, Y. 2000. A novel synthesis of oligonucleotide‐peptide conjugates with a base‐labile phosphate linker between the two components according to the allyl‐protected phosphoramidite strategy. Tetrahedron 56: 4427 ‐ 4435.
dc.identifier.citedreferenceSarracino, D.A., Steinberg, J.A., Vergo, M.T., Woodworth, G.F., Tetzlaff, C.N., and Richert, C. 1998. 5′‐Peptidyl substituents allow a tuning of the affinity of oligodeoxyribonucleotides for RNA. Bioorg. Med. Chem. Lett. 8: 2511 ‐ 2516.
dc.identifier.citedreferenceSchattenkerk, C., Wreesmann, C.T.J., de Graaf, M.J., van der Marel, G.A., and van Boom, J.H. 1984. Synthesis of naturally occurring nucleopeptide fragment via a phosphotriester approach. Tetrahedron Lett. 25: 5197 ‐ 5200.
dc.identifier.citedreferenceShabarova, Z.A. 1970. Synthetic nucleotide‐peptides. In Progress in Nucleic Acid Research and Molecular Biology, Vol. 10 ( J.N. Davidson and W.E. Colum, eds.)pp. 145 ‐ 182. Academic Press, London.
dc.identifier.citedreferenceStetsenko, D.A., Malakhov, A.D., and Gait, M.J. 2002. Total stepwise solid‐phase synthesis of oligonucleotide‐(3′→︀ N )‐peptide conjugates. Org. Lett. 2002: 3259 ‐ 3262.
dc.identifier.citedreferenceTung, C.‐H. and Stein, S. 2000. Preparation and applications of peptide‐oligonucleotide conjugates. Bioconjugate Chem. 11: 605 ‐ 618.
dc.identifier.citedreferenceUeno, Y., Saito, R., and Hata, T. 1993. Studies on the synthesis of nucleotidyl‐peptides. II. The preparation of a nucleotidyl‐peptide having a 5′‐nucleotidyl‐(P‐O)‐serine phosphodiester bond. Nucl. Acids Res. 21: 4451 ‐ 4457.
dc.identifier.citedreferenceViladkar, S.M. 2002. Guanine rich oligonucleotide‐amino acid/peptide conjugates: Preparation and characterization. Tetrahedron 58: 495 ‐ 502.
dc.identifier.citedreferenceWaldmann, H. and Gabold, S. 1997. Chemoenzymatic synthesis of nucleopeptides. Chem. Commun. 1861 ‐ 1862.
dc.identifier.citedreferenceZatsepin, T.S., Stetsenko, D.A., Arzumanov, A.A., Romanova, E.A., Gait, M.J., and Oretskaya, T.S. 2002. Synthesis of peptide‐oligonucleotide conjugates with single and multiple peptides attached to 2′‐aldehydes through thiazolidine, oxime, and hydrazine linkages. Bioconjugate Chem. 13: 822 ‐ 830.
dc.identifier.citedreferenceZubin, E.M., Romanova, E.A., and Oretskaya, T.S. 2002. Modern methods for the synthesis of peptide‐oligonucleotide conjugates. Russ. Chem. Rev. 71: 239 ‐ 264.
dc.identifier.citedreferenceDreef‐Tromp, C.M., van den Elst, HR., van den Boogaart, J.E., van der Marel, G.A., and van Boom, J.H. 1992b. Solid‐phase synthesis of an RNA nucleopeptide fragment from the nucleoprotein of poliovirus. Nucl. Acids Res. 20: 2435 ‐ 2439.
dc.identifier.citedreferenceTung and Stein, 2000.See above.
dc.identifier.citedreferenceAlbericio, F., Cruz, M., Debéthune, L., Eritja, R., Giralt, E., Grandas, A., Marchán, V., Pastor, J.J., Pedroso, E., Rabanal, F., and Royo, M. 2001. An improved synthesis of N ‐[(9‐hydroxymethyl)‐2‐fluorenyl]succinamic acid (HMFS), a versatile handle for the solid‐phase synthesis of biomolecules. Synthetic Commun. 31: 225 ‐ 232.
dc.identifier.citedreferenceBardella, F., Giralt, E., and Pedroso, E. 1990. Polystyrene‐supported synthesis by the phosphite‐triester approach: An alternative for the large scale synthesis of small oligodeoxyribonucleotides. Tetrahedron Lett. 31: 6231 ‐ 6234.
dc.identifier.citedreferenceBasu, S., and Wickstrom, E. 1995. Solid phase synthesis of a D ‐peptide‐phosphorothioate oligodeoxynucleotide conjugate from two arms of a polyethylene glycol‐polystyrene support. Tetrahedron Lett. 36: 4943 ‐ 4946.
dc.identifier.citedreferenceBeltrán, M., Maseda, M., Robles, J., Pedroso, E., and Grandas, A. 1997. Homoserine derivatives for the preparation of base‐stable nucleopeptide analogues. Lett. Pept. Sci. 4: 147 ‐ 155.
dc.identifier.citedreferenceBeltrán, M., Pedroso, E., and Grandas, A. 1998. A comparison of histidine protecting groups in the synthesis of peptide‐oligonucleotide conjugates. Tetrahedron Lett. 39: 4115 ‐ 4118.
dc.identifier.citedreferenceBergmann, F. and Bannwarth, W. 1995. Solid phase synthesis of directly linked peptide‐oligodeoxynucleotide hybrids using standard synthesis protocols. Tetrahedron Lett. 36: 1839 ‐ 1842.
dc.identifier.citedreferenceChen, C.‐P., Li, X.‐X., Zhang, L.‐R., Min, J.‐M., Chan, J.Y.‐W., Fung, K.‐P., Wang, S.‐Q., and Zhang, L.‐H. 2002. Synthesis of antisense oligonucleotide‐peptide conjugate targeting to GLUT‐1 in HepG‐2 and MCF‐7 cells. Bioconjugate Chem. 13: 525 ‐ 529.
dc.identifier.citedreferenceChen, C.‐P., Zhang, L.,‐R., Peng, Y,‐F., Wang, X.,‐B., Wang, S.,‐Q., and Zhang, L.H. 2003. A concise method for the preparation of peptide and arginine‐rich peptide‐conjugated antisense oligonucleotide. Bioconjugate Chem. 14: 532 ‐ 538.
dc.identifier.citedreferenceChristensen, T. 1979. A qualitative test for monitoring coupling completeness in solid phase peptide synthesis using chloranil. Acta Chem. Scand. B33: 763 ‐ 766.
dc.identifier.citedreferenceCivitello, E.R., Leniek, R.J., Hossler, K.A., Haebe, K., and Stearns, D.M. 2001. Synthesis of peptide‐oligonucleotide conjugates for chromium coordination. Bioconjugate Chem. 12: 459 ‐ 463.
dc.identifier.citedreferenceDebéthune, L., Marchán, V., Fábregas, G., Pedroso, E., and Grandas, A. 2002a. Towards nucleopeptides containing any trifunctional amino acid (II). Tetrahedron 58: 6965 ‐ 6978.
dc.identifier.citedreferenceDebéthune, L., Kohlhagen, G., Grandas, A., and Pommier, Y. 2002b. Processing of nucleopeptides mimicking the topoisomerase I‐DNA covalent complex by tyrosyl‐DNA phosphodiesterase. Nucl. Acids Res. 30: 1198 ‐ 1204.
dc.identifier.citedreferenceDreef‐Tromp, C.M., van der Maarel, J.C.M., van den Elst, H., van der Marel, G.A., and van Boom, J.H. 1992a. Solid‐phase synthesis of the nucleopeptide fragment H‐Asp‐Ser[pAAAGTAAGCC]‐Glu‐OH from the nucleoprotein of Bacillus subtilis phage φ29. Nucl. Acids Res. 20: 4015 ‐ 4020.
dc.identifier.citedreferenceDrioli, S., Adamo, I., Ballico, M., Morvan, F., and Bonora, G.M. 2002. Liquid‐phase synthesis and characterization of a conjugated chimeric oligonucleotide‐PEG‐peptide. Eur. J. Org. Chem. 3473 ‐ 3480.
dc.identifier.citedreferenceEritja, R., Robles, J., Fernández‐Forner, D., Albericio, F., Giralt, E., and Pedroso, E. 1991. NPE‐resin, a new approach to the solid‐phase synthesis of protected peptides and oligonucleotides I: Synthesis of the supports and their application to oligonucleotide synthesis. Tetrahedron Lett. 32: 1511 ‐ 1514.
dc.identifier.citedreferenceFlohr, S., Jungmann, V., and Waldmann, H. 1999. Chemoenzymatic synthesis of nucleopeptides. Chem. Eur. J. 5: 669 ‐ 681.
dc.identifier.citedreferenceFujii, T. and Sakakibara, S. 1974. Studies on the synthesis of histidine peptides. I. N Im ‐Tosylhistidine derivatives as starting materials. Bull. Chem. Soc. Jpn. 47: 3146 ‐ 3151.
dc.identifier.citedreferenceGairí, M., Lloyd‐Williams, P., Albericio, A., and Giralt, E. 1990. Use of BOP reagent for the suppression of diketopiperazine formation in boc/bzl solid‐phase peptide synthesis. Tetrahedron Lett. 31: 7363 ‐ 7366.
dc.identifier.citedreferenceGait, M.J. 2003. Peptide‐mediated cellular delivery of antisense oligonucleotides and their analogues. Cell. Mol. Life Sci. 60: 1 ‐ 10.
dc.identifier.citedreferenceGarcía de la Torre, B., Albericio, F., Saison‐Behmoaras, E., Bachi, A., and Eritja, R. 1999. Synthesis and binding properties of oligonucleotides carrying nuclear localization sequences. Bioconjugate Chem. 10: 1005 ‐ 1012.
dc.identifier.citedreferenceGisin, B.F. and Merrifield, R.B. 1972. Carboxyl‐catalyzed intramolecular aminolysis side reaction in solid‐phase peptide synthesis. J. Am. Chem. Soc. 94: 3102 ‐ 3106.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.