Show simple item record

Using PepExplorer to Filter and Organize De Novo Peptide Sequencing Results

dc.contributor.authorda Veiga Leprevost, Felipe
dc.contributor.authorBarbosa, Valmir C.
dc.contributor.authorCarvalho, Paulo Costa
dc.date.accessioned2020-01-13T15:06:03Z
dc.date.available2020-01-13T15:06:03Z
dc.date.issued2015-09
dc.identifier.citationda Veiga Leprevost, Felipe; Barbosa, Valmir C.; Carvalho, Paulo Costa (2015). "Using PepExplorer to Filter and Organize De Novo Peptide Sequencing Results." Current Protocols in Bioinformatics 51(1): 13.27.1-13.27.9.
dc.identifier.issn1934-3396
dc.identifier.issn1934-340X
dc.identifier.urihttps://hdl.handle.net/2027.42/152617
dc.description.abstractPepExplorer aids in the biological interpretation of de novo sequencing results; this is accomplished by assembling a list of homolog proteins obtained by aligning results from widely adopted de novo sequencing tools against a target‐decoy sequence database. Our tool relies on pattern recognition to ensure that the results satisfy a user‐given false‐discovery rate (FDR). For this, it employs a radial basis function neural network that considers the precursor charge states, de novo sequencing scores, the peptide lengths, and alignment scores. PepExplorer is recommended for studies addressing organisms with no genomic sequence available. PepExplorer is integrated into the PatternLab for proteomics environment, which makes available various tools for downstream data analysis, including the resources for quantitative and differential proteomics. © 2015 by John Wiley & Sons, Inc.
dc.publisherWiley Periodicals, Inc.
dc.publisherHumana Press
dc.subject.otherde novo sequencing
dc.subject.otherproteomics
dc.subject.othermass spectrometry
dc.titleUsing PepExplorer to Filter and Organize De Novo Peptide Sequencing Results
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152617/1/cpbi1327.pdf
dc.identifier.doi10.1002/0471250953.bi1327s51
dc.identifier.sourceCurrent Protocols in Bioinformatics
dc.identifier.citedreferenceChi, H., Sun, R.‐X., Yang, B., Song, C.‐Q., Wang, L.‐H., Liu, C., Fu, Y., Yuan, Z.‐F., Wang, H.‐P., He, S.‐M., and Dong, M.‐Q. 2010. pNovo: De novo peptide sequencing and identification using HCD spectra. J. Proteome Res. 9: 2713 ‐ 2724.
dc.identifier.citedreferenceLeprevost, F.V., Lima, D.B., Crestani, J., Perez‐Riverol, Y., Zanchin, N., Barbosa, V.C., and Carvalho, P.C. 2013. Pinpointing differentially expressed domains in complex protein mixtures with the cloud service of PatternLab for Proteomics. J. Proteomics 89: 179 ‐ 182.
dc.identifier.citedreferenceJunqueira, M., Spirin, V., Balbuena, T.S., Thomas, H., Adzhubei, I., Sunyaev, S., and Shevchenko, A. 2008. Protein identification pipeline for the homology‐driven proteomics. J. Proteomics 71: 346 ‐ 356.
dc.identifier.citedreferenceJunqueira, M. and Carvalho, P.C. 2012. Tools and challenges for diversity‐driven proteomics in Brazil. Proteomics 12: 2601 ‐ 2606.
dc.identifier.citedreferenceFrank, A. and Pevzner, P. 2005. PepNovo: De novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77: 964 ‐ 973.
dc.identifier.citedreferenceEng, J.K., McCormack, A.L., and Yates, J.R. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5: 976 ‐ 989.
dc.identifier.citedreferenceBorges, D., Perez‐Riverol, Y., Nogueira, F.C.S., Domont, G.B., Noda, J., da Veiga Leprevost, F., Besada, V., França, F.M.G., Barbosa, V.C., Sánchez, A., and Carvalho, P.C. 2013. Effectively addressing complex proteomic search spaces with peptide spectrum matching. Bioinformatics 29: 1343 ‐ 1344.
dc.identifier.citedreferenceCarvalho, P. C., Fischer, J. S. G., Xu, T., Yates, J. R. and Barbosa, V. C. 2012. PatternLab: From mass spectra to label‐free differential shotgun proteomics. Curr. Protoc. Bioinform. 40: 13.19.1 ‐ 13.19.18.
dc.identifier.citedreferenceShevchenko, A., Sunyaev, S., Loboda, A., Shevchenko, A., Bork, P., Ens, W., and Standing, K.G. 2001. Charting the proteomes of organisms with unsequenced genomes by MALDI‐quadrupole time‐of‐flight mass spectrometry and BLAST homology searching. Anal. Chem. 73: 1917 ‐ 1926.
dc.identifier.citedreferenceSeidler, J., Zinn, N., Boehm, M.E., and Lehmann, W.D. 2010. De novo sequencing of peptides by MS/MS. Proteomics 10: 634 ‐ 649.
dc.identifier.citedreferenceSaiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. 1985. Enzymatic amplification of beta‐globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science (New York, N.Y.) 230: 1350 ‐ 1354.
dc.identifier.citedreferencePunta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., Heger, A., Holm, L., Sonnhammer, E.L.L., Eddy, S.R., Bateman, A., and Finn, R.D. 2012. The Pfam protein families database. Nucleic Acids Res. 40: D290 ‐ D301.
dc.identifier.citedreferenceNa, S., Bandeira, N., and Paek, E. 2012. Fast multi‐blind modification search through tandem mass spectrometry. Mol. Cell Proteomics 11: M111.010199.
dc.identifier.citedreferenceMuth, T., Kolmeder, C.A., Salojärvi, J., Keskitalo, S., Varjosalo, M., Verdam, F.J., Rensen, S.S., Reichl, U., de Vos, W.M., Rapp, E., and Martens, L. 2015. Navigating through metaproteomics data: A logbook of database searching. Proteomics [Epub ahead of print].
dc.identifier.citedreferenceMa, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty‐Kirby, A., and Lajoie, G. 2003. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17: 2337 ‐ 2342.
dc.identifier.citedreferenceLeprevost, F.V., Valente, R.H., Lima, D.B., Perales, J., Melani, R., Yates, J.R., Barbosa, V.C., Junqueira, M., and Carvalho, P.C. 2014. PepExplorer: A similarity‐driven tool for analyzing de novo sequencing results. Mol. Cell Proteomics 13: 2480 ‐ 2489.
dc.identifier.citedreferenceBandeira, N. 2007. Spectral networks: A new approach to de novo discovery of protein sequences and posttranslational modifications. BioTechniques 42: 687, 689, 691 passim.
dc.identifier.citedreferenceBartlett, J.M.S. and Stirling, D. 2003. A Short history of the polymerase chain reaction. In PCR Protocols pp. 3 ‐ 6. Humana Press, Totowa, N.J. Available at http://link.springer.com/10.1385/1‐59259‐384‐4:3 [Accessed April 16, 2015].
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.