Show simple item record

Sclerostin Antibody–Induced Changes in Bone Mass Are Site Specific in Developing Crania

dc.contributor.authorScheiber, Amanda L
dc.contributor.authorBarton, David K
dc.contributor.authorKhoury, Basma M
dc.contributor.authorMarini, Joan C
dc.contributor.authorSwiderski, Donald L
dc.contributor.authorCaird, Michelle S
dc.contributor.authorKozloff, Kenneth M
dc.date.accessioned2020-01-13T15:06:08Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:06:08Z
dc.date.issued2019-12
dc.identifier.citationScheiber, Amanda L; Barton, David K; Khoury, Basma M; Marini, Joan C; Swiderski, Donald L; Caird, Michelle S; Kozloff, Kenneth M (2019). "Sclerostin Antibody–Induced Changes in Bone Mass Are Site Specific in Developing Crania." Journal of Bone and Mineral Research 34(12): 2301-2310.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/152620
dc.description.abstractSclerostin antibody (Scl‐Ab) is an anabolic bone agent that has been shown to increase bone mass in clinical trials of adult diseases of low bone mass, such as osteoporosis and osteogenesis imperfecta (OI). Its use to decrease bone fragility in pediatric OI has shown efficacy in several growing mouse models, suggesting translational potential to pediatric disorders of low bone mass. However, the effects of pharmacologic inhibition of sclerostin during periods of rapid growth and development have not yet been described with respect to the cranium, where lifelong deficiency of functioning sclerostin leads to patterns of excessive bone growth, cranial compression, and facial palsy. In the present study, we undertook dimensional and volumetric measurements in the skulls of growing Brtl/+ OI mice treated with Scl‐Ab to examine whether therapy‐induced phenotypic changes were similar to those observed clinically in patients with sclerosteosis or Van Buchem disorder. Mice treated between 3 and 14 weeks of age with high doses of Scl‐Ab show significant calvarial thickening capable of rescuing OI‐induced deficiencies in skull thickness. Other changes in cranial morphology, such as lengths and distances between anatomic landmarks, intracranial volume, and suture interdigitation, showed minimal effects of Scl‐Ab when compared with growth‐induced differences over the treatment duration. Treatment‐induced narrowing of foramina was limited to sites of vascular but not neural passage, suggesting patterns of local regulation. Together, these findings reveal a site specificity of Scl‐Ab action in the calvaria with no measurable cranial nerve impingement or brainstem compression. This differentiation from the observed outcomes of lifelong sclerostin deficiency complements reports of Scl‐Ab treatment efficacy at other skeletal sites with the prospect of minimal cranial secondary complications. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherSCLEROSTIN ANTIBODY
dc.subject.otherOSTEOGENESIS IMPERFECTA
dc.subject.otherCRANIAL MORPHOLOGY
dc.subject.otherVASCULARITY
dc.subject.otherANABOLIC EFFECT
dc.titleSclerostin Antibody–Induced Changes in Bone Mass Are Site Specific in Developing Crania
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152620/1/jbmr3858.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152620/2/jbmr3858_am.pdf
dc.identifier.doi10.1002/jbmr.3858
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceAdams DC, Collyer ML, Kaliontzopolou A Sherrat E. Geomorph: software for geometric morphometric analysis. R package version 3.0.5; 2017 [Online]. Available from: http://cran.r-project.org/package=geomorph. Accessed January, 2018.
dc.identifier.citedreferenceEimar H, Tamimi F, Retrouvey J‐M, Rauch F, Aubin JE, McKee MD. Craniofacial and dental defects in the Col1a1Jrt/+ mouse model of osteogenesis imperfecta. J Dent Res. 2016; 95 ( 7 ): 761 – 8.
dc.identifier.citedreferenceDe Carlos F, Varela I, Germana A, et al. Microcephalia with mandibular and dental dysplasia in adult Zmpste24‐deficient mice. J Anat. 2008; 213 ( 5 ): 509 – 19.
dc.identifier.citedreferenceLi X, Ominsky MS, Warmington KS, Morony S, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009; 24: 578.
dc.identifier.citedreferenceLi X, Niu QT, Warmington KS, Asuncion FJ, et al. Progressive increases in bone mass and bone strength in an ovariectomized rat model of osteoporosis after 26 weeks of treatment with a sclerostin antibody. Endocrinology. 2014; 155: 4785.
dc.identifier.citedreferenceLi X, Ominsky MS, Villasensor KS, et al. Sclerostin antibody reverses bone loss by increasing bone formation and decreasing bone resorption in a rat model of male osteoporosis. Endocrinology. 2018; 159: 260 – 71.
dc.identifier.citedreferenceYao W, Dai W, Jiang L, et al. Sclerostin‐antibody treatment of glucocorticoid‐induced osteoporosis maintained bone mass and strength. Osteoporos Int. 2016; 27: 283.
dc.identifier.citedreferenceTian X, Jee WS, Li X, Paszty C, Ke HZ. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb‐immobilization rat model. Bone. 2011; 48: 197.
dc.identifier.citedreferenceSpatz JM, Ellman R, Cloutier AM, Louis L, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 2013; 28: 865.
dc.identifier.citedreferenceBeggs LA, Ye F, Ghosh P, et al. Sclerostin inhibition prevents spinal cord injury‐induced cancellous bone loss. J Bone Miner Res. 2015; 30: 681.
dc.identifier.citedreferenceShah SA, Kormpakis I, Havlioglu N, et al. Sclerostin antibody treatment enhances rotator cuff tendon‐to‐bone healing in an animal model. J Bone Joint Surg Am. 2017; 99: 855 – 64.
dc.identifier.citedreferenceMcDonald MM, Morse A, Mikulec K, Peacookm L, et al. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res. 2012; 30: 1541.
dc.identifier.citedreferenceLiu Y, Rui Y, Cheng TY, et al. Effects of sclerostin antibody on the healing of femoral fractures in ovariectomised rats. Calcif Tissue Int. 2016; 98: 263.
dc.identifier.citedreferenceKozloff KM, Carden A, Bergwitz C, et al. Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res. 2004; 19: 614 – 22.
dc.identifier.citedreferenceUveges TE, Collin‐Osdoby P, Cabral WA, et al. Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors. J Bone Miner Res. 2008; 23: 1983 – 94.
dc.identifier.citedreferenceForlino A, Marini JC. Osteogenesis imperfecta: prospects for molecular therapeutics. Mol Genet Metab. 2000; 71 ( 1–2 ): 225 – 32.
dc.identifier.citedreferencePerosky JE, Khoury B, Jenks T, et al. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model. Bone. 2016; 93: 79.
dc.identifier.citedreferenceTakahashi H, Hitsumoto Y, Honda N, et al. Mouse model of Bells palsy induced by reactivation of herpes simplex virus type 1. J Neuropathol Exp Neurol. 2001; 60 ( 6 ): 621 – 7.
dc.identifier.citedreferenceRichtsmeier JT, Baxter LL, Reeves RH. Parallels of craniofacial maldevelopment in down syndrome and Ts65Dn mice. Dev Dyn. 2000; 217: 137 – 45.
dc.identifier.citedreferenceBookstein FL, Chernoff B, Elder RL, Humphries J, Smith G, Strauss, R. Morphometrics in evolutionary biology: the geometry of size and shape change, with examples from fishes. Philadelphia, PA: Academy of Natural Sciences of Philadelphia, Special Publication No. 15 1985.
dc.identifier.citedreferenceBookstein FL. Morphometric tools for landmark data. Geometry and biology. Cambridge, UK: Cambridge University Press; 1991.
dc.identifier.citedreferenceBookstein FL. Standard formula for the uniform shape component in landmark data. In Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE, eds. Advances in morphometrics. NATO Advanced Science Institutes Series, Series A, Life Sciences, vol. 284. New York: Plenum Press; 1996 pp 153 – 68.
dc.identifier.citedreferenceBellary S, Steinberg A, Mirzayan N, Shirak M, et al. Wormian bones: a review. Clin Anat. 2013; 26: 922 – 7.
dc.identifier.citedreferenceThompson DAW. On growth and form. The Complete Revised Edition. 2nd ed. Dover; 1942 (reprinted 1992). Cambridge: Cambridge University Press.
dc.identifier.citedreferenceAdams DC, Collyer ML. Analysis of character divergence along environmental gradients and other covariates. Evolution. 2007; 61 ( 3 ): 510 – 5.
dc.identifier.citedreferenceYoshimura K, Kobayashi R, Ohmura T, Kajimoto Y, Miura T. A new mathematical model for pattern formation by cranial sutures. J Theor Biol. 2016; 408: 66 – 74.
dc.identifier.citedreferenceByron CD, Borke J, Yu J, et al. Effects of increased muscle mass on mouse sagittal suture morphology and mechanics. Anat Rec A Discov Mol Cell Evol Biol. 2004; 279: 676 – 84.
dc.identifier.citedreferenceBehr B, Longaker MT, Quarto N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol. 2010; 344 ( 2 ): 922 – 40.
dc.identifier.citedreferenceMiura T, Perlyn CA, Kinboshi M, et al. Mechanism of skull suture maintenance and interdigitation. J Anat. 2009; 215 ( 6 ): 642 – 55.
dc.identifier.citedreferencePaxinos G. The rat nervous system. Amsterdam: Academic Press; 2015.
dc.identifier.citedreferenceGreene EC. Anatomy of the Rat. New York: Hafner Pub Co.; 1963.
dc.identifier.citedreferenceGray H, Carter H. Anatomy of the Human Body. 20th ed. Philadelphia: Lea & Febiger; 1918.
dc.identifier.citedreferenceBasivertebral foramen. Clinical Anatomy Associates, Inc. [Cited November 26, 2017]. Available from: https://clinanat.com/100-mtd/142-basivertebral-foramen.
dc.identifier.citedreferenceAgholme F, Isaksson H, Li X, Ke HZ, Aspenberg P. Anti‐sclerostin antibody and mechanical loading appear to influence metaphyseal bone independently in rats. Acta Orthop. 2011; 82: 628.
dc.identifier.citedreferenceOlvera D, Stolzenfeld R, Marini JC, Caird MS, Kozloff KM. Low dose of bisphosphonate enhances sclerostin antibody‐induced trabecular bone mass gains in Brtl/+ osteogenesis imperfecta mouse model. J Bone Miner Res. 2018; 33 ( 7 ): 1272.
dc.identifier.citedreferenceLittle DG, Peacock L, Mikulec K, Kneissel M, et al. Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta. Bone. 2017; 101: 96.
dc.identifier.citedreferenceBeneke JE. Facial nerve dysfunction in osteopetrosis. Laryngoscope. 1993; 103 ( 5 ): 494 – 7.
dc.identifier.citedreferenceBenichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers‐Schonberg disease): clinical and radiological manifestations in 42 patients. Bone. 2000; 26 ( 1 ): 87 – 93.
dc.identifier.citedreferenceKozloff KM. Osteogenesis imperfecta: a need to understand divergent treatment outcomes in a disorder rich in heterogeneity. J Bone Miner Res. 2019; 34 ( 2 ): 205.
dc.identifier.citedreferenceVora SR, Camci ED, Cox TC. Postnatal ontogeny of the cranial base and craniofacial skeleton in male C57BL/6J mice: a reference standard for quantitative analysis. Front Physiol. 2015; 6: 417.
dc.identifier.citedreferenceBaldrick P. Developing drugs for pediatric use: a role of juvenile animal studies? Regul Toxicol Pharmacol. 2004; 39: 381 – 9.
dc.identifier.citedreferenceJin S, Sim K, Kim S. Development and growth of the normal cranial vault: an embryologic review. J Korean Neurosurg Soc. 2016; 59 ( 3 ): 192 – 6.
dc.identifier.citedreferenceSemler O, Cheung MS, Glorieux FH, Rauch F. Wormian bones in osteogenesis imperfecta: correlation to clinical findings and genotype. Am J Med Genet. 2010; 152A ( 7 ): 1681 – 7.
dc.identifier.citedreferenceKovero O, Pynnönen S, Kuurila‐Svahn K, Kaitila I, Waltimo‐Sirén J. Skull base abnormalities in osteogenesis imperfecta: a cephalometric evaluation of 54 patients and 108 control volunteers. J Neurosurg. 2006; 105 ( 3 ): 361 – 70.
dc.identifier.citedreferenceDavies MW, Inglis GD, Jardine LA, Koorts PJ. Antenatal Consults: A Guide for Neonatologists and Paediatricians. 1st ed. Sydney: Churchill Livingstone Elsevier; 2013.
dc.identifier.citedreferenceRenaud A, Aucourt J, Weill J, et al. Radiographic features of osteogenesis imperfecta. Insights Imaging. 2013; 4 ( 4 ): 417 – 29.
dc.identifier.citedreferenceMarini JC, Forlino A, Bächinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017; 3: 17052.
dc.identifier.citedreferenceZeitlin L, Fassier F, Glorieux FH. Modern approach to children with osteogenesis imperfecta. J Pediatr Orthop. 2003; 12: 77 – 87.
dc.identifier.citedreferenceRauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004; 363 ( 9418 ): 1377 – 85.
dc.identifier.citedreferenceMiller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs. placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016; 316 ( 7 ): 722 – 33.
dc.identifier.citedreferenceNeer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1‐34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001; 344 ( 19 ): 1434 – 41.
dc.identifier.citedreferenceVahle JL, Sato M, Long GG, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1‐34) for 2 years and relevance to human safety. Toxicol Pathol. 2002; 30 ( 3 ): 312 – 21.
dc.identifier.citedreferenceJolette J, Attalla B, Varela A, et al. Comparing the incidence of bone tumors in rats chronically exposed to the selective PTH type 1 receptor agonist abaloparatide or PTH(1‐34). Regul Toxicol Pharmacol. 2017; 86: 356 – 65.
dc.identifier.citedreferenceMoester MJC, Papapoulos SE, Löwik CWGM, van Bezooijen RL. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010; 87 ( 2 ):99–107.
dc.identifier.citedreferenceCosman FF, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016; 375 ( 16 ): 1532 – 43.
dc.identifier.citedreferenceSinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Rapidly growing Brtl/ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015; 71: 115 – 23.
dc.identifier.citedreferenceRoschger A, Roschger P, Keplingter P, et al. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone. 2014; 66: 182 – 8.
dc.identifier.citedreferenceJacobsen CM, Barber LA, Ayturk UM, et al. Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta. J Bone Miner Res. 2014; 29: 2297 – 306.
dc.identifier.citedreferenceGrafe I, Alexander S, Yang T, et al. Sclerostin antibody treatment improves the bone phenotype of Crtap mice, a model of recessive osteogenesis imperfecta. J Bone Miner Res. 2015; 31 ( 5 ): 1030 – 40.
dc.identifier.citedreferenceCardinal M, Tys J, Roels T, et al. Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone. 2019; 124: 137 – 47.
dc.identifier.citedreferenceSinder BP, White LE, Salemi JD, et al. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014; 25: 2097.
dc.identifier.citedreferenceGardner J, VanBezooijen R, Mervis B, et al. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab. 2005; 90: 6392 – 5.
dc.identifier.citedreferenceSharifi M, Ereifej L, Lewiecki EM. Sclerostin and skeletal health. Rev Endocr Metab Disord. 2015; 16: 149.
dc.identifier.citedreferenceWengenroth M, Vasvari G, Federspil PA, Mair J, Schneider P, Stippich C. Case 150: Van Buchem disease (hyperostosis corticalis generalisata). Radiology. 2009; 253 ( 1 ): 272 – 6.
dc.identifier.citedreferencevan Lierop AH, Appelman‐Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone. 2017; 96: 51 – 62.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.