Show simple item record

Simulated and experimental estimates of hydrodynamic drag from bioâ logging tags

dc.contributor.authorZhang, Ding
dc.contributor.authorHoop, Julie M.
dc.contributor.authorPetrov, Victor
dc.contributor.authorRocho‐levine, Julie
dc.contributor.authorMoore, Michael J.
dc.contributor.authorShorter, K. Alex
dc.date.accessioned2020-01-13T15:06:22Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:06:22Z
dc.date.issued2020-01
dc.identifier.citationZhang, Ding; Hoop, Julie M.; Petrov, Victor; Rocho‐levine, Julie ; Moore, Michael J.; Shorter, K. Alex (2020). "Simulated and experimental estimates of hydrodynamic drag from bioâ logging tags." Marine Mammal Science 36(1): 136-157.
dc.identifier.issn0824-0469
dc.identifier.issn1748-7692
dc.identifier.urihttps://hdl.handle.net/2027.42/152630
dc.description.abstractDrag force acting on swimming marine mammals is difficult to measure directly. Researchers often use simple modeling and kinematic measurements from animals, or computational fluid dynamics (CFD) simulations to estimate drag. However, studies that compare these methods are lacking. Here, computational simulation and physical experiments were used to estimate drag forces on gliding bottlenose dolphins (Tursiops truncatus). To facilitate comparison, variable drag loading (noâ tag, tag, tagâ +â 4, tagâ +â 8) was used to increase force in both simulations and experiments. During the experiments, two dolphins were trained to perform controlled glides with variable loading. CFD simulations of dolphin/tag geometry in steady flow (1â 6â m/s) were used to model drag forces. We expect both techniques will capture relative changes created by experimental conditions, but absolute forces predicted by the methods will differ. CFD estimates were within a calculated 90% confidence interval of the experimental results for all but the tag condition. Relative drag increase predicted by the simulation vs. experiment, respectively, differed by between 21% and 31%: tag, 4% vs. 33%; tagâ +â 4, 47% vs. 68%; and tagâ +â 8, 108% vs. 77%. The results from this work provide a direct comparison of computational and experimental estimates of drag, and provide a framework to quantify uncertainty.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherbioâ logging
dc.subject.otherCFD
dc.subject.othercomputational fluid dynamics
dc.subject.otherdrag
dc.subject.othertag
dc.titleSimulated and experimental estimates of hydrodynamic drag from bioâ logging tags
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152630/1/mms12627.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152630/2/mms12627_am.pdf
dc.identifier.doi10.1111/mms.12627
dc.identifier.sourceMarine Mammal Science
dc.identifier.citedreferenceShorter, K. A., Murray, M. M., Johnson, M., Moore, M., & Howle, L. E. ( 2014 ). Drag of suction cup tags on swimming animals: Modeling and measurement. Marine Mammal Science, 30, 726 â 746.
dc.identifier.citedreferencePhillips, A. B., Turnock, S. R., & Furlong, M. ( 2010 ). The use of computational fluid dynamics to aid costâ effective hydrodynamic design of autonomous underwater vehicles. Proceedings of the Institution of Mechanical Engineers, 224, 239 â 254.
dc.identifier.citedreferenceRidolix, V., Guinet, C., Liret, C., Creton, P. O., Steenstrup, R., & Beauplet, G. ( 1997 ). A video sonar as a new tool to study marine mammals in the wild: Measurements of dolphin swimming speed. Marine Mammal Science, 13, 196 â 206.
dc.identifier.citedreferenceRodi, W. ( 1991 ). Experience with twoâ layer models combining the kâ epsilon model with a oneâ equation model near the wall. 29th Aerospace Sciences Meeting (p. 216 ).
dc.identifier.citedreferenceRohr, J. J., Fish, F. E., & Gilpatrick, J. W. ( 2002 ). Maximum swim speeds of captive and free ranging delphinids: Critical analysis of extraordinary performance. Marine Mammal Science, 18, 1 â 9.
dc.identifier.citedreferenceRohr, J., Latz, M. I., Fallon, S. T., Nauen, J. C., & Hendricks, E. R. ( 1998 ). Experimental approaches towards interpreting dolphinâ stimulated bioluminescence. Journal of Experimental Biology, 201, 1447 â 1460.
dc.identifier.citedreferenceShane, S. H. ( 1990 ). Behavior and ecology of the bottlenose dolphin at Sanibel Island, Florida. In S. Leatherwood & R. R. Reeves (Eds.), The bottlenose dolphin (pp. 245 â 266 ). San Diego, CA: Academic Press Inc..
dc.identifier.citedreferenceShereena, S. G., Vengadesan, S., Idichandy, V. G., & Bhattacharyya, S. K. ( 2013 ). CFD study of drag reduction in axisymmetric underwater vehicles using air jets. Engineering Applications of Computational Fluid Mechanics, 7, 193 â 209.
dc.identifier.citedreferenceShortis, M. ( 2015 ). Calibration techniques for accurate measurements by underwater camera systems. Sensors, 15, 30810 â 30826. https://doi.org/10.3390/s151229831
dc.identifier.citedreferenceSkrovan, R. C., Williams, T. M., Berry, P. S., Moore, P. W., & Davis, R. W. ( 1999 ). The diving physiology of bottlenose dolphins ( Tursiops truncatus ). II. Biomechanics and changes in buoyancy at depth. Journal of Experimental Biology, 202, 2749 â 2761.
dc.identifier.citedreferenceSolsona Berga, A., Wright, A. J., Galatius, A., Sveegaard, A., & Teilmann, J. ( 2015 ). Do larger tag packages alter diving behavior in harbor porpoises? Marine Mammal Science, 31, 756 â 763.
dc.identifier.citedreferenceStelle, L. L., Blake, R. W., & Trites, A. W. ( 2000 ). Hydrodynamic drag in Steller sea lions ( Eumetopias jubatus ). Journal of Experimental Biology, 203, 1915 â 1923.
dc.identifier.citedreferenceUngerechts, B. E., Daly, D., & Zhu, J. P. ( 1998 ). What dolphins tell us about hydrodynamics. Journal of Swimming Research, 13, 1 â 7.
dc.identifier.citedreferencevan der Hoop, J. M., Fahlman, A., Hurst, T., Rochoâ Levine, J., Shorter, K. A., Petrov, V., & Moore, M. J. ( 2014 ). Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. Journal of Experimental Biology, 217, 4229 â 4236.
dc.identifier.citedreferencevan der Hoop, J. M., Fahlman, A., Shorter, K. A., Gabaldon, J., Rochoâ Levine, J., Petrov, V., & Moore, M. J. ( 2018 ). Swimming energy economy in bottlenose dolphins under variable drag loading. Frontiers in Marine Science, 5, 465.
dc.identifier.citedreferenceVogel, S. ( 1994 ). Life in moving fluids: The physical biology of flow. Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceWare, C., Trites, A. W., Rosen, D. A., & Potvin, J. ( 2016 ). Averaged propulsive body acceleration (APBA) can be calculated from biologging tags that incorporate gyroscopes and accelerometers to estimate swimming speed, hydrodynamic drag and energy expenditure for Steller sea lions. PLoS ONE, 11 ( 6 ), e0157326.
dc.identifier.citedreferenceWebb, P. W. ( 1975 ). Hydrodynamics and energetics of fish propulsion. Bulletin of the Fisheries Research Boad of Canada, 190, 33 â 48.
dc.identifier.citedreferenceWilliams, T. M., Friedl, W. A., & Haun, J. E. ( 1993 ). The physiology of bottlenose dolphins ( Tursiops truncatus ): Heart rate, metabolic rate and plasma lactate concentration during exercise. Journal of Experimental Biology, 179, 31 â 46.
dc.identifier.citedreferenceWilson, R. P., Grant, W. S., & Duffy, D. C. ( 1986 ). Recording devices on freeâ ranging marine animals: Does measurement affect foraging performance? Ecology, 67, 1091 â 1093.
dc.identifier.citedreferenceWilson, R. P., Shepard, E. L., & Liebsch, N. ( 2008 ). Prying into the intimate details of animal lives: Use of a daily diary on animals. Endangered Species Research, 4 ( 1â 2 ), 123 â 137.
dc.identifier.citedreferenceWürsig, B., & Würsig, M. ( 1979 ). Behavior and ecology of the bottlenose dolphin, Tursiops truncatus, in the South Atlantic. Fishery Bulletin, 77, 399 â 412.
dc.identifier.citedreferenceYazdi, P., Kilian, A., & Culik, B. M. ( 1999 ). Energy expenditure of swimming bottlenose dolphins ( Tursiops truncatus ). Marine Biology, 134, 601 â 607.
dc.identifier.citedreferenceZhang D., Gabaldon, J., Lauderdale, L., Johnsonâ Roberson, M., Miller, L. J., Barton, K., & Shorter, K. ( 2019 ). Localization and tracking of uncontrollable underwater agents: Particle filter based fusion of onâ body IMUs and stationary cameras. IEEE International Conference on Robotics and Automation.
dc.identifier.citedreferenceZhang, D., Shorter, K., Rochoâ Levine, J., van der Hoop, J., Moore, M., & Barton, K. ( 2018 ). Behavior inference from bioâ logging sensors: A systematic approach for feature generation, selection and state classification. ASME. Dynamic Systems and Control Conference. 2018. Volume 2: V002T21A005. doi:10.1115.
dc.identifier.citedreferenceAnderson, E. J., Mcgillis, W. R., & Grosenbaugh, M. A. ( 2001 ). The boundary layer of swimming fish. Journal of Experimental Biology, 204, 81 â 102.
dc.identifier.citedreferenceAoki, K., Watanabe, Y. Y., Crocker, D. E., Robinson, P. W., Biuw, M., Costa, D. P., â ¦ Miller, P. J. O. ( 2011 ). Northern elephant seals adjust gliding and stroking patterns with changes in buoyancy: Validation of atâ sea metrics of body density. Journal of Experimental Biology, 214, 2973 â 2987.
dc.identifier.citedreferenceBalmer, B. C., Wells, R. S., Howle, L. E., Barleycorn, A. A., McLellan, W. A., Pabst, D. A., â ¦ Zolman, E. S. ( 2014 ). Advances in cetacean telemetry: A review of single pin transmitter attachment techniques on small cetaceans and development of a new satellite linked transmitter design. Marine Mammal Science, 30, 656 â 673.
dc.identifier.citedreferenceBarron, D. G., Brawn, J. D., & Weatherhead, P. J. ( 2010 ). Meta analysis of transmitter effects on avian behaviour and ecology. Methods in Ecology and Evolution, 1, 180 â 187.
dc.identifier.citedreferenceBilo, D., & Nachtigall, W. ( 1980 ). A simple method to determine drag coefficients in aquatic animals. Journal of Experimental Biology, 87, 357 â 359.
dc.identifier.citedreferenceBroell, F., Burnell, C., & Taggart, C. T. ( 2016 ). Measuring abnormal movements in freeâ swimming fish with accelerometers: Implications for quantifying tag and parasite load. Journal of Experimental Biology, 219, 695 â 705.
dc.identifier.citedreferenceCulik, B. M., Bannasch, R., & Wilson, R. P. ( 1994 ). External devices on penguins: How important is shape? Marine Biology, 118, 353 â 357.
dc.identifier.citedreferenceDiCiccio, T. J., & Efron, B. ( 1996 ). Bootstrap confidence intervals. Statistical Science, 11, 189 â 212.
dc.identifier.citedreferenceFeldkamp, S. D. ( 1987 ). Swimming in the California sea lion: Morphometrics, drag and energetics. Journal of Experimental Biology, 131, 117 â 135.
dc.identifier.citedreferenceFish, F. E. ( 1993 ). Power output and propulsive efficiency of swimming bottlenose dolphins ( Tursiops truncatus ). Journal of Experimental Biology, 185, 179 â 193.
dc.identifier.citedreferenceFish, F. E. ( 1998 ). Comparative kinematics and hydrodynamics of odontocete cetaceans: Morphological and ecological correlates with swimming performance. Journal of Experimental Biology, 201, 2867 â 2877.
dc.identifier.citedreferenceFish, F. E., & Hui, C. A. ( 1991 ). Dolphin swimmingâ a review. Mammal Review, 21, 181 â 195.
dc.identifier.citedreferenceFish, F. E., Legac, P., Williams, T. M., & Wei, T. ( 2014 ). Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV. Journal of Experimental Biology, 217, 252 â 260.
dc.identifier.citedreferenceFiore, G., Anderson, E., Garborg, C. S., Murray, M., Johnson, M., Moore, M. J., â ¦ Shorter, K. A. ( 2017 ). From the track to the ocean: Using flow control to improve marine bioâ logging tags for cetaceans. PLoS ONE, 12, e0170962.
dc.identifier.citedreferenceGabaldon, J., Zhang, F., Barton, K., Johnsonâ Roberson, M., & Shorter, K. A. ( 2017 ). A framework for enhanced localization of marine mammals using autoâ detected video and wearable sensor data fusion. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2505 â 2510.
dc.identifier.citedreferenceHanson, M. B. ( 2001 ). An evaluation of the relationship between small cetacean tag design and attachment durations: A bioengineering approach (Doctoral dissertation). University of Washington, Seattle, WA.
dc.identifier.citedreferenceHarris, J. E. ( 1937 ). The mechanical significance of the position and movements of the paired fins in the Teleostei. Washington, DC: Carnegie Institution of Washington.
dc.identifier.citedreferenceHazekamp, A. A., Mayer, R., & Osinga, N. ( 2010 ). Flow simulation along a seal: The impact of an external device. European Journal of Wildlife Research, 56, 131 â 140.
dc.identifier.citedreferenceHertel, H. ( 1966 ). Structure form and movement. New York, NY: Reinhold.
dc.identifier.citedreferenceHussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., â ¦ Whoriskey, F. G. ( 2015 ). Aquatic animal telemetry: A panoramic window into the underwater world. Science, 348, 1255642.
dc.identifier.citedreferenceIrvine, A. B., Wells, R. S., & Scott, M. D. ( 1982 ). An evaluation of techniques for tagging small odontocete cetaceans. Fishery Bulletin, 80, 135 â 143.
dc.identifier.citedreferenceJohnson, M., Tyack, P., Nowacek, D., & Shorter, A. ( 2000 ). A digital acoustic recording tag for measuring the response of marine mammals to sound. Journal of the Acoustical Society of America, 108, 2582 â 2583.
dc.identifier.citedreferenceJones, T., Van Houtan, K. S., Bostrom, B. L., Ostafichuk, P., Mikkelsen, J., Tezcan, E., â ¦ Seminoff, J. A. ( 2013 ). Calculating the ecological impacts of animal borne instruments on aquatic organisms. Methods in Ecology and Evolution, 4, 1178 â 1186.
dc.identifier.citedreferenceJoung, T.â H., Sammut, K., He, F., & Lee, S.â K. ( 2012 ). Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis. International Journal of Naval Architecture and Ocean Engineering, 4, 44 â 56.
dc.identifier.citedreferenceKays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. ( 2015 ). Terrestrial animal tracking as an eye on life and planet. Science, 348, aaa2478.
dc.identifier.citedreferenceLang, T. G., & Daybell, D. A. ( 1963 ). Porpoise performance tests in a seaâ water tank. China Lake, CA: Naval Ordnance Test Station.
dc.identifier.citedreferenceLavest, J. M., Rives, G., & Lapresté, J. T. ( 2000 ). Underwater camera calibration. In D. Vernon (Ed.). Computer Vision â ECCV 2000. Lecture Notes in Computer Science, Vol. 1843. Calibration/Medical Image Understanding/Visual Motion, 654 â 668. https://doi.org/10.1007/3-540-45053-X
dc.identifier.citedreferenceLittnan, C. L., Baker, J. D., Parrish, F. A., & Marshall, G. J. ( 2004 ). Effects of video camera attachment on the foraging behavior of immature Hawaiian monk seals. Marine Mammal Science, 20, 345 â 352.
dc.identifier.citedreferenceLockyer, C., & Morris, R. ( 1987 ). Observations on diving behaviour and swimming speeds in a wild juvenile Tursiops truncatus. Aquatic Mammals, 13, 31 â 35.
dc.identifier.citedreferenceLópez, L. M., de Soto, N. A., Miller, P., & Johnson, M. ( 2016 ). Tracking the kinematics of caudalâ oscillatory swimming: A comparison of two onâ animal sensing methods. Journal of Experimental Biology, 219, 2103 â 2109.
dc.identifier.citedreferenceMaresh, J. L., Simmons, S. E., Crocker, D. E., McDonald, B. I., Williams, T. M., & Costa, C. P. ( 2014 ). Freeâ swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport. Journal of Experimental Biology, 217, 1485 â 1495.
dc.identifier.citedreferenceMate, B. R., Rossbach, K. A., Nieukirk, S. L., Wells, R. S., Irvine, A. B., Scott, M. D., & Read, A. J. ( 1995 ). Satellite monitored movements and dive behavior of a bottlenose dolphin ( Tursiops truncatus ) in Tampa Bay, Florida. Marine Mammal Science, 11, 452 â 463.
dc.identifier.citedreferenceMcIntyre, T. ( 2014 ). Trends in tagging of marine mammals: A review of marine mammal biologging studies. African Journal of Marine Science, 36, 409 â 422.
dc.identifier.citedreferenceMcMahon, C. R., Field, I. C., Bradshaw, C. J., White, G. C., & Hindell, M. A. ( 2008 ). Tracking and dataâ logging devices attached to elephant seals do not affect individual mass gain or survival. Journal of Experimental Marine Biology and Ecology, 360, 71 â 77.
dc.identifier.citedreferenceMiller, P. J., Johnson, M. P., Tyack, P. L., & Terray, E. A. ( 2004 ). Swimming gaits, passive drag and buoyancy of diving sperm whales Physeter macrocephalus. Journal of Experimental Biology, 207, 1953 â 1967.
dc.identifier.citedreferenceNoren, S. R., Redfern, J. V., & Edwards, E. F. ( 2011 ). Pregnancy is a drag: Hydrodynamics, kinematics and performance in preâ and postâ parturition bottlenose dolphins ( Tursiops truncatus ). Journal of Experimental Biology, 214, 4151 â 4159.
dc.identifier.citedreferencePavlov, V. V., & Rashad, A. M. ( 2012 ). A nonâ invasive dolphin telemetry tag: Computer design and numerical flow simulation. Marine Mammal Science, 28, E16 â E27.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.