Show simple item record

Oligodeoxyribonucleotide Analogs Functionalized with Phosphonoacetate and Thiophosphonoacetate Diesters

dc.contributor.authorDellinger, Douglas J.
dc.contributor.authorYamada, Christina M.
dc.contributor.authorCaruthers, Marvin H.
dc.date.accessioned2020-01-13T15:06:36Z
dc.date.available2020-01-13T15:06:36Z
dc.date.issued2004-09
dc.identifier.citationDellinger, Douglas J.; Yamada, Christina M.; Caruthers, Marvin H. (2004). "Oligodeoxyribonucleotide Analogs Functionalized with Phosphonoacetate and Thiophosphonoacetate Diesters." Current Protocols in Nucleic Acid Chemistry 18(1): 4.24.1-4.24.26.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/152642
dc.description.abstractOligodeoxyribonucleotides with phosphonoacetate or thiophosphonoacetate internucleotide linkages can be made in high yield by solid‐phase synthesis and possess many advantages. They are highly stable to nucleases, water‐soluble, and anionic at neutral pH. They form stable duplexes with DNA and RNA, and stimulate RNase H degradation of complementary RNA. The preparation of the N,N‐(diisopropylamino)phosphinyl acetate monomers from standard protected nucleosides is described here, followed by the synthesis of phosphonoacetate and thiophosphonoate oligodeoxyribonucleotides, as well as chimeric oligomers that have these modified linkages in combination with natural or phosphorothioate linkages. Purification and characterization of these oligomers is also presented.
dc.publisherHumana Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherthiophosphonoacetate DNA synthesis
dc.subject.otherphosphonoacetate DNA synthesis
dc.titleOligodeoxyribonucleotide Analogs Functionalized with Phosphonoacetate and Thiophosphonoacetate Diesters
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152642/1/cpnc0424.pdf
dc.identifier.doi10.1002/0471142700.nc0424s18
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceBayless, P.L. and Hauser, C.R. 1954. A Reformatskii type condensation of aroyl chlorides with ethyl 2‐bromoisobutyrate by means of zinc to form β‐keto esters. J. Am. Chem. Soc. 76: 2306 ‐ 2308.
dc.identifier.citedreferenceArbuzov, A.E. and Dunin, A.A. 1927. Über phosphon‐carbonsäuren. Ber. 60B: 291 ‐ 295.
dc.identifier.citedreferenceDellinger et al., 2003.See above.
dc.identifier.citedreferenceSheehan, D., Lunstad, B., Yamada, C.M., Stell, B., Caruthers, M.H., and Dellinger, D.J. 2003. Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucl. Acids Res. 31: 4109 ‐ 4118.
dc.identifier.citedreferenceRudolph, M.J., Reitman, M.S., MacMillan, E.W., and Cook. A.F. 1996. Phosphonoacetate derivatives of oligodeoxyribonucleotides. Nucleosides Nucleotides 15: 1725 ‐ 1739.
dc.identifier.citedreferenceReddy, M.P., Hanna, N.B., and Farooqui, F. 1994. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35: 4311 ‐ 4314.
dc.identifier.citedreferenceOverby, L.R., Duff, R.G., and Mao, J.C. 1977. Antiviral potential of phosphonoacetic acid. Ann. N.Y. Acad. Sci. 284: 310 ‐ 320.
dc.identifier.citedreferenceGreef, C.H., Seeberger, P.H., Caruthers, M.H., Beaton, G., and Bankaitis‐Davis, D. 1996. Synthesis of phosphorodithioate RNA by the H‐phosphonothioate method. Tetrahedron Lett. 37: 4451 ‐ 4454.
dc.identifier.citedreferenceGlen Research. 1996. Non‐aqueous oxidation with 10‐camphorsulfonyl‐oxziridine. Glen Research Corporation Technical Report 9: 8 ‐ 9.
dc.identifier.citedreferenceDellinger, D.J., Sheehan, D.M., Christensen, N.K., Lindberg, J.G., and Caruthers, M.H. 2003. Solid phase chemical synthesis of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. J. Am. Chem. Soc. 125: 940 ‐ 950.
dc.identifier.citedreferenceCaruthers, M.H., Barone, A.D., Beaucage, S.L., Dodds, D.R., Fisher, E.F., McBride, L.J., Matteucci, M., Stabinsky, Z., and J.‐Y. Tang. 1987. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Methods Enzymol. 154: 287 ‐ 313.
dc.identifier.citedreferenceSheehan et al., 2003.See above.
dc.identifier.citedreferenceMatrosov, E.I., Tsvetlsov, E.N., Malevannaya, R.A., and Kabachnik, M.I. 1972. Infrared spectra and association of phosphinylacetic acid. Zh. Obshch. Khim. 42: 1695 ‐ 1700.
dc.identifier.citedreferenceLambert, R.W., Martin, J.A., Thomas, G.J., Duncan, I.B., Hall, M.J., and Heimer, E.P. 1989. Synthesis and antiviral activity of phosphonoacetic and phosphonoformic acid‐esters of 5‐bromo‐2′‐deoxyuridine and related pyrimidine nucleosides and acyclonucleosides. J. Med. Chem. 32: 367 ‐ 374.
dc.identifier.citedreferenceHogrefe, R.I., Reynolds, M.A., Vaghefi, M.M., Young, K.M., Riley, T.A., Klem, R.E., and Arnold, L.J. Jr. 1993. An improved method for the synthesis and deprotection of methylphosphonate oligonucleotides. In Protocols for Oligonucleotides and Analogs,Vol. 20 ( S. Agrawal, ed.)pp. 143 ‐ 164. Humana Press, Totowa, New Jersey.
dc.identifier.citedreferenceGriengl, H., Hayden, W., Penn, G., Declercq, E., and Rosenwirth, B. 1988. Phosphonoformate and phosphonoacetate derivatives of 5‐substituted 2′‐deoxyuridines—synthesis and antiviral activity. J. Med. Chem. 31: 1831 ‐ 1839.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.