Show simple item record

Heavy Metals in an Urban Watershed in Southeastern Michigan

dc.contributor.authorMurray, Kent S.
dc.contributor.authorRogers, Daniel T.
dc.contributor.authorKaufman, Martin M.
dc.date.accessioned2020-01-13T15:07:00Z
dc.date.available2020-01-13T15:07:00Z
dc.date.issued2004-01
dc.identifier.citationMurray, Kent S.; Rogers, Daniel T.; Kaufman, Martin M. (2004). "Heavy Metals in an Urban Watershed in Southeastern Michigan." Journal of Environmental Quality 33(1): 163-172.
dc.identifier.issn0047-2425
dc.identifier.issn1537-2537
dc.identifier.urihttps://hdl.handle.net/2027.42/152662
dc.description.abstractThe occurrence of heavy metals in the soil was measured over a period of several years to determine background concentrations in a heavily urbanized watershed in southeastern Michigan. A spatially dispersed sample was collected to capture the inherent variability of the soils and historic land use. The analysis focused on 14 metals (antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc) that are part of the USEPA’s list of the 129 most common pollutants. Metal concentrations were measured at three depths: near‐surface (<0.5 m), shallow subsurface (0.5–10 m), and depths greater than 10 m across six soil units in glacial terrain. Additional analyses assessed the metal concentrations in each depth profile across three general land use categories: residential, commercial, and industrial. Metal concentrations were the highest in the near‐surface with Pb present at concentrations averaging 15.5 times that of background in industrial areas and approximately 16 times background in residential areas. Cadmium, Hg, and Zn were also present in surface soils at levels of several times that of background. The highest concentrations of each of these metals were present in the clay‐rich soils located in the eastern, more urbanized and industrialized part of the watershed. Metals detected at elevated concentrations decreased in concentration with increasing depth and distance from the urbanized and industrialized center of the watershed. Statistically significant differences in the concentrations of heavy metals were also noted between the land use categories, with Cd, Cr, Cu, Pb, Ni, and Zn observed within industrial areas at mean concentrations several times greater than background levels.
dc.publisherAmerican Society of Agronomy, Crop Science Society of America, Soil Science Society
dc.publisherWiley Periodicals, Inc.
dc.titleHeavy Metals in an Urban Watershed in Southeastern Michigan
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152662/1/jeq2jeq20041630.pdf
dc.identifier.doi10.2134/jeq2004.1630
dc.identifier.sourceJournal of Environmental Quality
dc.identifier.citedreferenceShacklette, H.T., and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. U.S. Geol. Survey Professional Paper 1270. U.S. Gov. Print. Office, Washington, DC.
dc.identifier.citedreferenceMielke, J.H. Lead in the inner cities. Am. Sci. 1999 87 62 – 73. https://doi.org/10.1511/1999.1.62
dc.identifier.citedreferenceMielke, J.H. Urban lead levels in Minneapolis: The case of the Hmong children. Environ. Res. 1984 34 64 – 76. https://doi.org/10.1016/0013‐9351(84)90076‐8, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984SV48300008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMiller, W.P. Distribution of cadmium, zinc, copper and lead in soils of industrial northwestern Indiana. J. Environ. Qual. 1983 12 29 – 33. https://doi.org/10.2134/jeq1983.12129x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1983QB94200004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMurray, K.S. Particle size and chemical control of heavy metals in bed sediment from the Rouge River, southeast Michigan. Environ. Sci. Technol. 1999 33 987 – 992. https://doi.org/10.1021/es9807946, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079543100019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMurray, K.S. Groundwater vulnerability, brownfield redevelopment and land use planning. J. Environ. Plann. Manage. 1999 42 801 – 810. https://doi.org/10.1080/09640569910830
dc.identifier.citedreferenceNeal, R.H. Selenite absorption on alluvial soils: I. Soil composition and pH effects. Soil Sci. Soc. Am. J. 1987 51 1165 – 1169. https://doi.org/10.2136/sssaj1987.03615995005100050013x
dc.identifier.citedreferenceRogers, D.T. 1996. Environmental geology of metropolitan Detroit. Clayton Environ. Consultants, Novi, MI.
dc.identifier.citedreferenceRogers, D.T. 1997a. Surficial geologic map and cross section of the Rouge River watershed, Michigan. 1:62,500. River Rouge Natl. Wet Weather Demonstration Project (RRNWWDP), Wayne County, MI.
dc.identifier.citedreferenceRogers, D.T. 1997b. The influence of groundwater and surface water in Michigan’s Rouge River watershed. p. 173 – 180. In Conjunctive use of water resources: Aquifer storage and recovery. Proc. of the Am. Water Resour. Assoc. Conf., Long Beach, CA. 22–26 Oct. 1997. AWRA, Middleburg, VA.
dc.identifier.citedreferenceRogers, D.T., and K.S. Murray. 1997. Occurrence of groundwater in metropolitan Detroit, U.S.A. p. 155 – 160. In Groundwater in the environment. Volume 1. Balkema Publ., Rotterdam, the Netherlands.
dc.identifier.citedreferenceShuman, L.M. 1991. Chemical forms of micronutrients in soils. p. 113 – 144. In J.J. Mortvedt et al. (ed.) Micronutrients in agriculture. SSSA Book Ser. 4. SSSA, Madison, WI.
dc.identifier.citedreferenceStevenson, F.J. 1991. Organic matter‐micronutrient reactions in soil. p. 145 – 186. In J.J. Mortvedt et al. (ed.) Micronutrients in agriculture. SSSA Book Ser. 4. SSSA, Madison, WI.
dc.identifier.citedreferenceThornton, I. 1991. Metal contamination of soil in urban areas. p. 124 – 139. In P.G. Bullock et al. (ed.) Soils in the urban environment. Blackwell Sci. Publ., Oxford.
dc.identifier.citedreferenceUnited States Department of Health and Human Services. 1988. The nature and extent of lead poisoning in children in the United States: A report to Congress. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta.
dc.identifier.citedreferenceUSEPA. 1983. Test methods for evaluating solid waste (SW‐486). USEPA, Washington, DC.
dc.identifier.citedreferenceUSEPA. 1998. Lead in your home: A parent’s reference guide. EPA/747/B‐98/002. Office of Prevention, Pesticides, and Toxic Substances, Washington, DC.
dc.identifier.citedreferenceWayne County Department of Environment. 1994. Rouge River Remedial Action Plan update. Wayne County Dep. of Environ., Detroit, MI.
dc.identifier.citedreferenceAlkhatib, E. Background levels of priority pollutant metals in soil. Am. Environ. Lab. 1998 10 6 – 9
dc.identifier.citedreferenceCox, C.A., and G.H. Colvin. 1995. Investigation of background metal concentrations in Ohio soils. Cox‐Colvin and Associates, Hillard, OH.
dc.identifier.citedreferenceEnvironmental Defense Fund. 1994. The global dimensions of lead poisoning. EDF, Washington, DC.
dc.identifier.citedreferenceFarrand, W.R. 1982. Quaternary geology of southern (& northern) Michigan. 1:500,000. Michigan Dep. of Nat. Resour., Geol. Survey Div., Lansing.
dc.identifier.citedreferenceFarrand, W.R. 1988. The glacial lakes around Michigan. Bull. 4. Michigan Dep. of Nat. Resour., Lansing.
dc.identifier.citedreferenceFlorini, K.L. 1990. Legacy of lead: America’s continuing epidemic of childhood lead poisoning. Environ. Defense Fund, Washington, DC.
dc.identifier.citedreferenceHarter, R.D. Use of kinetics for the study of exchange reactions in soils. Soil Sci. Soc. Am. J. 1983 47 666 – 669. https://doi.org/10.2136/sssaj1983.03615995004700040012x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1983RD82700012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceHolmgren, G.G.S. Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America. J. Environ. Qual. 1993 22 335 – 348. https://doi.org/10.2134/jeq1993.00472425002200020015x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LE94700015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceJaagumagi, R. 1993. Development of the Ontario Provincial Sediment Quality Guidelines for arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel and zinc. Ministry of Environ. and Energy, Toronto.
dc.identifier.citedreferenceKaufman, M.M. Surface and subsurface geologic risk factors to ground water affecting brownfield redevelopment potential. J. Environ. Qual. 2003 2003 32 490 – 499. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000181618300013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceKesler‐Arnold, K.A., and M.O. O’Hearn. 1990. Background concentrations of metals and cyanide in lower Michigan soils. p. 123 – 137. In Proc. 44th Purdue Industrial Waste Conf., West Lafayette, IN. 19–23 June 1990. Lewis Publ., Chelsea, MI.
dc.identifier.citedreferenceLindsay, W.L. 1979. Chemical equilibria in soils. John Wiley & Sons, New York.
dc.identifier.citedreferenceMa, L.Q. Concentration and distribution of eleven metals in Florida soils. J. Environ. Qual. 1997 26 769 – 775. https://doi.org/10.2134/jeq1997.263769x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WZ34900032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.identifier.citedreferenceMattigod, S.V., G. Sposito, and A.L. Page. 1981. Factors affecting the solubilities of trace metals in soils. p. 203 – 221. In D.E. Baker (ed.) Chemistry in the soil environment. ASA Spec. Publ. 40. ASA and SSSA, Madison, WI.
dc.identifier.citedreferenceMcLean, J.E., and B.E. Bledsoe. 1992. Ground water issue: Behavior of metals in soils. Technol. Innovation Office, Office of Solid Waste and Emergency Response, USEPA, Washington, DC.
dc.identifier.citedreferenceMichigan Department of Environmental Quality. 1998. Natural Resources Environmental Protection Act 451 (NREPA), as amended. MDEQ, Lansing.
dc.identifier.citedreferenceMichigan Department of Natural Resources. 1991. Michigan background soil survey. Waste Manage. Div., Lansing.
dc.identifier.citedreferenceMielke, H.W. Lead concentrations in inner city soils as a factor in the child lead problem. Am. J. Public Health 1983 73 1366 – 1369. https://doi.org/10.2105/AJPH.73.12.1366, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1983RS17100004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.