Show simple item record

Nanofibrous antibiotic‐eluting matrices: Biocompatibility studies in a rat model

dc.contributor.authorPassos, Patrícia C.
dc.contributor.authorMoro, Juliana
dc.contributor.authorBarcelos, Raquel Cristine Silva
dc.contributor.authorDa Rosa, Higor Z.
dc.contributor.authorVey, Luciana T.
dc.contributor.authorBürguer, Marilise Escobar
dc.contributor.authorMaciel, Roberto M.
dc.contributor.authorDanesi, Cristiane C.
dc.contributor.authorEdwards, Paul C.
dc.contributor.authorBottino, Marco C.
dc.contributor.authorKantorski, Karla Z.
dc.date.accessioned2020-01-13T15:07:14Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-01-13T15:07:14Z
dc.date.issued2020-02
dc.identifier.citationPassos, Patrícia C. ; Moro, Juliana; Barcelos, Raquel Cristine Silva; Da Rosa, Higor Z.; Vey, Luciana T.; Bürguer, Marilise Escobar ; Maciel, Roberto M.; Danesi, Cristiane C.; Edwards, Paul C.; Bottino, Marco C.; Kantorski, Karla Z. (2020). "Nanofibrous antibiotic‐eluting matrices: Biocompatibility studies in a rat model." Journal of Biomedical Materials Research Part B: Applied Biomaterials 108(2): 306-315.
dc.identifier.issn1552-4973
dc.identifier.issn1552-4981
dc.identifier.urihttps://hdl.handle.net/2027.42/152674
dc.description.abstractThis study evaluated the biocompatibility of degradable polydioxanone (PDS) electrospun drug delivery systems (hereafter referred as matrices) containing metronidazole (MET) or ciprofloxacin (CIP) after subcutaneous implantation in rats. Sixty adult male rats were randomized into six groups: SHAM (sham surgery); PDS (antibiotic‐free matrix); 1MET (one 25 wt% MET matrix); 1CIP (one 25 wt% CIP matrix); 2MET (two 25 wt% MET matrices); and 2CIP (two 25 wt% CIP matrices). At 3 and 30 days, animals were assessed for inflammatory cell response (ICR), collagen fibers degradation, and oxidative profile (reactive oxygen species [ROS]; lipid peroxidation [LP]; and protein carbonyl [PC]). At 3 days, percentages of no/discrete ICR were 100, 93.3, 86.7, 76.7, 50, and 66.6 for SHAM, PDS, 1MET, 1CIP, 2MET, and 2CIP, respectively. At 30 days, percentages of no/discrete ICR were 100% for SHAM, PDS, 1MET, and 1CIP and 93.3% for 2MET and 2CIP. Between 3 and 30 days, SHAM, 1CIP, and 2CIP produced collagen, while 1MET and 2MET were unchanged. At 30 days, the collagen fiber means percentages for SHAM, PDS, 1MET, 1CIP, 2MET, and 2CIP were 63.7, 60.7, 56.6, 62.6, 51.8, and 61.7, respectively. Antibiotic‐eluting matrices showed similar or better oxidative behavior when compared to PDS, except for CIP‐eluting matrices, which showed higher levels of PC compared to SHAM or PDS at 30 days. Collectively, our findings indicate that antibiotic‐eluting matrices may be an attractive biocompatible drug delivery system to fight periodontopathogens. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2019.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherdrug delivery
dc.subject.otherbiomaterials
dc.subject.otherelectrospinning
dc.subject.othernanofibers
dc.subject.otherperiodontitis
dc.titleNanofibrous antibiotic‐eluting matrices: Biocompatibility studies in a rat model
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152674/1/jbmb34389.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152674/2/jbmb34389_am.pdf
dc.identifier.doi10.1002/jbm.b.34389
dc.identifier.sourceJournal of Biomedical Materials Research Part B: Applied Biomaterials
dc.identifier.citedreferenceGhanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, Sader R, Unger RE, Ziegler G, Kirkpatrick CJ. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: Histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta‐tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed Mater 2012; 7: 015005.
dc.identifier.citedreferencePetersen PE, Ogawa H. The global burden of periodontal disease: Towards integration with chronic disease prevention and control. Periodontol 2000 2012; 60: 15 – 39.
dc.identifier.citedreferenceKassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe periodontitis in 1990‐2010: A systematic review and meta‐regression. J Dent Res 2014; 93: 1045 – 1053.
dc.identifier.citedreferenceChiu HC, Chiang CY, Tu HP, Wikesjo UM, Susin C, Fu E. Effects of bone morphogenetic protein‐6 on periodontal wound healing/regeneration in supralveolar periodontal defects in dogs. J Clin Periodontol 2013; 40: 624 – 630.
dc.identifier.citedreferenceSusin C, Wikesjo UM. Regenerative periodontal therapy: 30 years of lessons learned and unlearned. Periodontol 2000 2013; 62: 232 – 242.
dc.identifier.citedreferenceMünchow EA, Albuquerque MT, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC. Development and characterization of novel ZnO‐loaded electrospun membranes for periodontal regeneration. Dent Mater 2015; 31: 1038 – 1051.
dc.identifier.citedreferenceYoshimoto I, Sasaki JI, Tsuboi R, Yamaguchi S, Kitagawa H, Imazato S. Development of layered PLGA membranes for periodontal tissue regeneration. Dent Mater 2018; 34: 538 – 550.
dc.identifier.citedreferenceBottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM. Recent advances in the development of GTR/GBR membranes for periodontal regeneration: A materials perspective. Dent Mater 2012; 28: 703 – 721.
dc.identifier.citedreferenceGottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J. New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 1986; 13: 604 – 616.
dc.identifier.citedreferenceGottlow J, Karring T, Nyman S. Guided tissue regeneration following treatment of recession‐type defects in the monkey. J Periodontol 1990; 61: 680 – 685.
dc.identifier.citedreferenceBottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater 2011; 7: 216 – 224.
dc.identifier.citedreferenceSusin C, Fiorini T, Lee J, De Stefano JA, Dickinson DP, Wikesjo UM. Wound healing following surgical and regenerative periodontal therapy. Peridodontol 2000 2015; 68: 83 – 98.
dc.identifier.citedreferenceSlots J, MacDonald ES, Nowzari H. Infectious aspects of periodontal regeneration. Periodontal 2000 1999; 19: 164 – 172.
dc.identifier.citedreferenceBayramov DF, Neff JA. Beyond conventional antibiotics – New directions for combination products to combat biofilm. Adv Drug Deliv Rev 2017; 112: 48 – 60.
dc.identifier.citedreferenceKim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide‐co‐glycolide)‐based electrospun nanofibrous scaffolds. J Control Release 2004; 98: 47 – 56.
dc.identifier.citedreferenceCui W, Li X, Zhu X, Yu G, Zhou S, Weng J. Investigation of drug release and matrix degradation of electrospun poly(DL‐lactide) fibers with paracetamol inoculation. Biomacromolecules 2006; 7: 1623 – 1629.
dc.identifier.citedreferenceKenawy ER, Abdel‐Hay FI, El‐Newehy MH, Wnek GE. Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 2009; 113: 296 – 302.
dc.identifier.citedreferenceLee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS, Park SW, Kim JE, Lee DH, Kim EC, Lee CH, Kwon IK. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 2014; 111: 530 – 537.
dc.identifier.citedreferenceMünchow EA, Pankajakshan D, Albuquerque MT, Kamocki K, Piva E, Gregory RL, Bottino MC. Synthesis and characterization of CaO‐loaded electrospun matrices for bone tissue engineering. Clin Oral Investig 2016; 20: 1921 – 1933.
dc.identifier.citedreferenceBottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, Spolnik KJ, Gregory RL. Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 2013; 92: 963 – 969.
dc.identifier.citedreferenceBottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL. Biodegradable nanofibrous drug delivery systems: Effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig 2014; 18: 2151 – 2158.
dc.identifier.citedreferenceOhkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351 – 358.
dc.identifier.citedreferenceOrstavik D, Mjor IA. Histopathology and X‐ray microanalysis of the subcutaneous tissue response to endodontic sealers. J Endod 1988; 14: 13 – 23.
dc.identifier.citedreferenceBavariya AJ, Andrew Norowski P Jr, Mark Anderson K, Adatrow PC, Garcia‐Godoy F, Stein SH, Bumgardner JD. Evaluation of biocompatibility and degradation of chitosan nanofiber membrane crosslinked with genipin. J Biomed Mater Res B Appl Biomater 2014; 102: 1084 – 1092.
dc.identifier.citedreferenceCastro ML, Franco GC, Branco‐de‐Almeida LS, Anbinder AL, Cogo‐Müller K, Cortelli SC, Duarte S, Saxena D, Rosalen PL. Downregulation of proteinase‐activated Receptor‐2, Interleukin‐17 and other Proinflammatory genes by subantimicrobial doxycycline dose in a rat periodontitis model. J Periodontol 2016; 87: 203 – 210.
dc.identifier.citedreferenceHempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2′,7′‐dichlorodihydrofluorescein diacetate, 5(and 6)‐carboxy‐2′,7′‐dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 1999; 27: 146 – 159.
dc.identifier.citedreferenceLowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265 – 275.
dc.identifier.citedreferenceYan LJ, Traber MG, Packer L. Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low‐density lipoproteins. Anal Biochem 1995; 228: 349 – 351.
dc.identifier.citedreferenceLevine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Methods Enzimol 1990; 186: 464 – 478.
dc.identifier.citedreferenceCui L, Iwamoto A, Lian JQ, Neoh HM, Maruyama T, Horikawa Y, Hiramatsu K. Novel mechanism of antibiotic resistance originating in vancomycin‐intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50: 428 – 438.
dc.identifier.citedreferenceRichter WF, Bhansali SG, Morris ME. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J 2012; 14: 559 – 570.
dc.identifier.citedreferenceCharman SA, McLennan DN, Edwards GA, Porter CJ. Lymphatic absorption is a significant contributor to the subcutaneous bioavailability of insulin in a sheep model. Pharm Res 2001; 18: 1620 – 1626.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.