Show simple item record

Gasdermin D: Evidence of pyroptosis in spontaneous preterm labor with sterile intraâ amniotic inflammation or intraâ amniotic infection

dc.contributor.authorGomez‐lopez, Nardhy
dc.contributor.authorRomero, Roberto
dc.contributor.authorTarca, Adi L.
dc.contributor.authorMiller, Derek
dc.contributor.authorPanaitescu, Bogdan
dc.contributor.authorSchwenkel, George
dc.contributor.authorGudicha, Dereje W.
dc.contributor.authorHassan, Sonia S.
dc.contributor.authorPacora, Percy
dc.contributor.authorJung, Eunjung
dc.contributor.authorHsu, Chaur‐dong
dc.date.accessioned2020-01-13T15:08:33Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:08:33Z
dc.date.issued2019-12
dc.identifier.citationGomez‐lopez, Nardhy ; Romero, Roberto; Tarca, Adi L.; Miller, Derek; Panaitescu, Bogdan; Schwenkel, George; Gudicha, Dereje W.; Hassan, Sonia S.; Pacora, Percy; Jung, Eunjung; Hsu, Chaur‐dong (2019). "Gasdermin D: Evidence of pyroptosis in spontaneous preterm labor with sterile intraâ amniotic inflammation or intraâ amniotic infection." American Journal of Reproductive Immunology 82(6): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/152726
dc.description.abstractProblemPyroptosis, inflammatory programmed cell death, is initiated through the inflammasome and relies on the poreâ forming actions of the effector molecule gasdermin D. Herein, we investigated whether gasdermin D is detectable in women with spontaneous preterm labor and sterile intraâ amniotic inflammation or intraâ amniotic infection.Method of studyAmniotic fluid samples (n = 124) from women with spontaneous preterm labor were subdivided into the following groups: (a) those who delivered at term (n = 32); and those who delivered preterm (b) without intraâ amniotic inflammation (n = 41), (c) with sterile intraâ amniotic inflammation (n = 32), or (d) with intraâ amniotic infection (n = 19), based on amniotic fluid ILâ 6 concentrations and the microbiological status of amniotic fluid (culture and PCR/ESIâ MS). Gasdermin D concentrations were measured using an ELISA kit. Multiplex immunofluorescence staining was also performed to determine the expression of gasdermin D, caspaseâ 1, and interleukinâ 1β in the chorioamniotic membranes. Flow cytometry was used to detect pyroptosis (active caspaseâ 1) in decidual cells from women with preterm labor and birth. Results(a) Gasdermin D was detected in the amniotic fluid and chorioamniotic membranes from women who underwent spontaneous preterm labor/birth with either sterile intraâ amniotic inflammation or intraâ amniotic infection, but was rarely detected in those without intraâ amniotic inflammation. (b) Amniotic fluid concentrations of gasdermin D were higher in women with intraâ amniotic infection than in those with sterile intraâ amniotic inflammation, and its expression in the chorioamniotic membranes was associated with caspaseâ 1 and ILâ 1β (inflammasome mediators). (c) Decidual stromal cells and leukocytes isolated from women with preterm labor and birth are capable of undergoing pyroptosis given their expression of active caspaseâ 1.ConclusionPyroptosis can occur in the context of sterile intraâ amniotic inflammation and intraâ amniotic infection in patients with spontaneous preterm labor and birth
dc.publisherChurchill Livingstone
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinflammasome
dc.subject.otheramniotic fluid
dc.subject.othercaspaseâ 1
dc.subject.otherinterleukinâ 1beta
dc.subject.otherparturition
dc.subject.otherpregnancy
dc.titleGasdermin D: Evidence of pyroptosis in spontaneous preterm labor with sterile intraâ amniotic inflammation or intraâ amniotic infection
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152726/1/aji13184.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152726/2/aji13184_am.pdf
dc.identifier.doi10.1111/aji.13184
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceRoberts DJ, Celi AC, Riley LE, et al. Acute histologic chorioamnionitis at term: nearly always noninfectious. PLoS ONE. 2012; 7 ( 3 ): e31819.
dc.identifier.citedreferenceShi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015; 526 ( 7575 ): 660 â 665.
dc.identifier.citedreferenceGaidt MM, Hornung V. Pore formation by GSDMD is the effector mechanism of pyroptosis. EMBO J. 2016; 35 ( 20 ): 2167 â 2169.
dc.identifier.citedreferenceSborgi L, Ruhl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016; 35 ( 16 ): 1766 â 1778.
dc.identifier.citedreferenceAglietti RA, Dueber EC. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 2017; 38 ( 4 ): 261 â 271.
dc.identifier.citedreferenceShi J, Gao W, Shao F. Pyroptosis: gasderminâ mediated programmed necrotic cell death. Trends Biochem Sci. 2017; 42 ( 4 ): 245 â 254.
dc.identifier.citedreferenceLiu X, Zhang Z, Ruan J, et al. Inflammasomeâ activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016; 535 ( 7610 ): 153 â 158.
dc.identifier.citedreferenceDiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and cultureâ based investigation. PLoS ONE. 2008; 3 ( 8 ): e3056.
dc.identifier.citedreferenceDiGiulio DB, Gervasi M, Romero R, et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequenceâ based methods. J Perinat Med. 2010; 38 ( 5 ): 503 â 513.
dc.identifier.citedreferenceDiGiulio DB, Gervasi MT, Romero R, et al. Microbial invasion of the amniotic cavity in pregnancies with smallâ forâ gestationalâ age fetuses. J Perinat Med. 2010; 38 ( 5 ): 495 â 502.
dc.identifier.citedreferenceDiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm preâ labor rupture of membranes. Am J Reprod Immunol. 2010; 64 ( 1 ): 38 â 57.
dc.identifier.citedreferenceYoon BH, Romero R, Moon JB, et al. Clinical significance of intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001; 185 ( 5 ): 1130 â 1136.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Chaiyasit N, et al. CXCL10 and ILâ 6: Markers of two different forms of intraâ amniotic inflammation in preterm labor. Am J Reprod Immunol. 2017; 78 ( 1 ): e12685.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am J Obstet Gynecol. 2017; 217 ( 6 ): 693.e691 â 693.e616.
dc.identifier.citedreferenceYoon BH, Romero R, Park JY, et al. Antibiotic administration can eradicate intraâ amniotic infection or inflammation in a subset of patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2019; 221: 142.e1 â 142.e22.
dc.identifier.citedreferenceOh KJ, Romero R, Park JY, et al. Evidence that antibiotic administration is effective in the treatment of a subset of patients with intraâ amniotic infection/inflammation presenting with cervical insufficiency. Am J Obstet Gynecol. 2019; 221: 140.e1 â 140.e18.
dc.identifier.citedreferencePacora P, Romero R, Erez O, et al. The diagnostic performance of the betaâ glucan assay in the detection of intraâ amniotic infection with Candida species. J Matern Fetal Neonatal Med. 2017; 32: 1703 â 1720.
dc.identifier.citedreferenceMusilova I, Andrys C, Holeckova M, et al. Interleukinâ 6 measured using the automated electrochemiluminescence immunoassay method for the identification of intraâ amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2018; 1 â 131. https://doi.org/10.1080/14767058.2018.1533947
dc.identifier.citedreferenceVarrey A, Romero R, Panaitescu B, et al. Human betaâ defensinâ 1: a natural antimicrobial peptide present in amniotic fluid that is increased in spontaneous preterm labor with intraâ amniotic infection. Am J Reprod Immunol. 2018; 80 ( 4 ): e13031.
dc.identifier.citedreferenceApgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg. 1953; 32 ( 4 ): 260 â 267.
dc.identifier.citedreferencevan Tetering A, van de Ven J, Fransen AF, Dieleman JP, van Runnard Heimel PJ, Oei SG. Risk factors of incomplete Apgar score and umbilical cord blood gas analysis: a retrospective observational study. J Matern Fetal Neonatal Med. 2017; 30 ( 21 ): 2539 â 2544.
dc.identifier.citedreferenceThavarajah H, Flatley C, Kumar S. The relationship between the five minute Apgar score, mode of birth and neonatal outcomes. J Matern Fetal Neonatal Med. 2018; 31 ( 10 ): 1335 â 1341.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015; 213 ( 4 Suppl ): S29 â S52.
dc.identifier.citedreferenceRedline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015; 213 ( 4 Suppl ): S21 â S28.
dc.identifier.citedreferenceRomero R, Kim YM, Pacora P, et al. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J Perinat Med. 2018; 46 ( 6 ): 613 â 630.
dc.identifier.citedreferenceRomero R, Quintero R, Nores J, et al. Amniotic fluid white blood cell count: a rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery. Am J Obstet Gynecol. 1991; 165 ( 4 Pt 1 ): 821 â 830.
dc.identifier.citedreferenceRomero R, Jimenez C, Lohda AK, et al. Amniotic fluid glucose concentration: a rapid and simple method for the detection of intraamniotic infection in preterm labor. Am J Obstet Gynecol. 1990; 163 ( 3 ): 968 â 974.
dc.identifier.citedreferenceNorman JE, Bollapragada S, Yuan M, Nelson SM. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth. 2007; 7 ( Suppl 1 ): S7.
dc.identifier.citedreferenceNorwitz ER, Bonney EA, Snegovskikh VV, et al. Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harb Perspect Med. 2015; 5 ( 11 ): a023143.
dc.identifier.citedreferenceHerrera CA, Stoerker J, Carlquist J, et al. inflammation, and the initiation of spontaneous term labor. Am J Obstet Gynecol. 2017; 217 ( 5 ): 583.e581 â 583.e588.
dc.identifier.citedreferencePhillippe M. The link between cellâ free DNA, inflammation and the initiation of spontaneous labor at term. Am J Obstet Gynecol. 2017; 217 ( 5 ): 501 â 502.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Panaitescu B, et al. Gasdermin D: in vivo evidence of pyroptosis in spontaneous labor at term. J Matern Fetal Neonatal Med. 2019; 1 â 11. https://doi.org/10.1080/14767058.2019.16107
dc.identifier.citedreferenceDuewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010; 464 ( 7293 ): 1357 â 1361.
dc.identifier.citedreferenceLin J, Shou X, Mao X, et al. Oxidized low density lipoprotein induced caspaseâ 1 mediated pyroptotic cell death in macrophages: implication in lesion instability? PLoS ONE. 2013; 8 ( 4 ): e62148.
dc.identifier.citedreferenceXu J, Jiang Y, Wang J, et al. Macrophage endocytosis of highâ mobility group box 1 triggers pyroptosis. Cell Death Differ. 2014; 21 ( 8 ): 1229 â 1239.
dc.identifier.citedreferenceChen Q, Jin Y, Zhang K, et al. Alarmin HNPâ 1 promotes pyroptosis and ILâ 1beta release through different roles of NLRP3 inflammasome via P2X7 in LPSâ primed macrophages. Innate Immun. 2014; 20 ( 3 ): 290 â 300.
dc.identifier.citedreferenceRuiz PA, Moron B, Becker HM, et al. Titanium dioxide nanoparticles exacerbate DSSâ induced colitis: role of the NLRP3 inflammasome. Gut. 2017; 66 ( 7 ): 1216 â 1224.
dc.identifier.citedreferenceLan P, Fan Y, Zhao Y, et al. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. J Clin Invest. 2017; 127 ( 6 ): 2222 â 2234.
dc.identifier.citedreferenceYin Y, Li X, Sha X, et al. Early hyperlipidemia promotes endothelial activation via a caspaseâ 1â sirtuin 1 pathway. Arterioscler Thromb Vasc Biol. 2015; 35 ( 4 ): 804 â 816.
dc.identifier.citedreferenceFink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005; 73 ( 4 ): 1907 â 1916.
dc.identifier.citedreferenceEvavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The poreâ forming protein gasdermin D regulates interleukinâ 1 secretion from living macrophages. Immunity. 2018; 48 ( 1 ): 35 â 44.e36.
dc.identifier.citedreferenceSemino C, Carta S, Gattorno M, Sitia R, Rubartelli A. Progressive waves of ILâ 1beta release by primary human monocytes via sequential activation of vesicular and gasdermin Dâ mediated secretory pathways. Cell Death Dis. 2018; 9 ( 11 ): 1088.
dc.identifier.citedreferenceAgorastos T. Antenatal estimation of fetal maturity by exfoliative cytology of amniotic fluid (author’s transl). Z Geburtshilfe Perinatol. 1979; 183 ( 2 ): 118 â 127.
dc.identifier.citedreferenceAgorastos T, Bar T, Grussendorf EI, Liedtke B, Lamberti G. "Ultrastructural aspects of amnioticâ fluid cells". A. Nonâ vital cells. II. Keratinocytes (author’s transl). Z Geburtshilfe Perinatol. 1981; 185 ( 3 ): 178 â 182.
dc.identifier.citedreferencevon Koskull H. Rapid identification of glial cells in human amniotic fluid with indirect immunofluorescence. Acta Cytol. 1984; 28 ( 4 ): 393 â 400.
dc.identifier.citedreferenceAkiyama M, Holbrook KA. Analysis of skinâ derived amniotic fluid cells in the second trimester; detection of severe genodermatoses expressed in the fetal period. J Invest Dermatol. 1994; 103 ( 5 ): 674 â 677.
dc.identifier.citedreferenceLian LH, Milora KA, Manupipatpong KK, Jensen LE. The doubleâ stranded RNA analogue polyinosinicâ polycytidylic acid induces keratinocyte pyroptosis and release of ILâ 36gamma. J Invest Dermatol. 2012; 132 ( 5 ): 1346 â 1353.
dc.identifier.citedreferenceSimanski M, Rademacher F, Schroder L, Glaser R, Harder J. The inflammasome and the epidermal growth factor receptor (EGFR) are involved in the Staphylococcus aureus â mediated induction of ILâ 1alpha and ILâ 1beta in human keratinocytes. PLoS ONE. 2016; 11 ( 1 ): e0147118.
dc.identifier.citedreferenceDoitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 Tâ cell depletion in HIVâ 1 infection. Nature. 2014; 505 ( 7484 ): 509 â 514.
dc.identifier.citedreferenceGalloway NL, Doitsh G, Monroe KM, et al. Cellâ toâ cell transmission of HIVâ 1 is required to trigger pyroptotic death of lymphoidâ tissueâ derived CD4 T cells. Cell Rep. 2015; 12 ( 10 ): 1555 â 1563.
dc.identifier.citedreferenceLu W, Demers AJ, Ma F, et al. Nextâ generation mRNA sequencing reveals pyroptosisâ induced CD4+ T cell death in early simian immunodeficiency virusâ infected lymphoid tissues. J Virol. 2016; 90 ( 2 ): 1080 â 1087.
dc.identifier.citedreferenceCai R, Liu L, Luo B, et al. Caspaseâ 1 activity in CD4 T cells is downregulated following antiretroviral therapy for HIVâ 1 infection. AIDS Res Hum Retroviruses. 2017; 33 ( 2 ): 164 â 171.
dc.identifier.citedreferenceBlanc WA. Amniotic infection syndrome; pathogenesis, morphology, and significance in circumnatal mortality. Clin Obstet Gynecol. 1959; 2: 705 â 734.
dc.identifier.citedreferenceBlanc WA. Pathology of the placenta and cord in ascending and in haematogenous infection. Ciba Found Symp. 1979; 77: 17 â 38.
dc.identifier.citedreferenceHillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A caseâ control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988; 319 ( 15 ): 972 â 978.
dc.identifier.citedreferenceHillier SL, Krohn MA, Kiviat NB, Watts DH, Eschenbach DA. Microbiologic causes and neonatal outcomes associated with chorioamnion infection. Am J Obstet Gynecol. 1991; 165 ( 4 Pt 1 ): 955 â 961.
dc.identifier.citedreferenceRomero R, Salafia CM, Athanassiadis AP, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol. 1992; 166 ( 5 ): 1382 â 1388.
dc.identifier.citedreferenceRedline RW. Placental inflammation. Semin Neonatol. 2004; 9 ( 4 ): 265 â 274.
dc.identifier.citedreferenceAnders AP, Gaddy JA, Doster RS, Aronoff DM. Current concepts in maternalâ fetal immunology: recognition and response to microbial pathogens by decidual stromal cells. Am J Reprod Immunol. 2017; 77 ( 3 ): e12623.
dc.identifier.citedreferenceChelmonskaâ Soyta A, Miller RB, Ruhnke L, Rosendal S. Activation of murine macrophages and lymphocytes by Ureaplasma diversum. Can J Vet Res. 1994; 58 ( 4 ): 275 â 280.
dc.identifier.citedreferenceSugiyama M, Saeki A, Hasebe A, et al. Activation of inflammasomes in dendritic cells and macrophages by Mycoplasma salivarium. Mol Oral Microbiol. 2016; 31 ( 3 ): 259 â 269.
dc.identifier.citedreferenceSaeki A, Sugiyama M, Hasebe A, Suzuki T, Shibata K. Activation of NLRP3 inflammasome in macrophages by mycoplasmal lipoproteins and lipopeptides. Mol Oral Microbiol. 2018; 33 ( 4 ): 300 â 311.
dc.identifier.citedreferenceSegovia JA, Chang TH, Winter VT, et al. NLRP3 is a critical regulator of inflammation and innate immune cell response during Mycoplasma pneumoniae infection. Infect Immun. 2018; 86 ( 1 ): e00548â 17.
dc.identifier.citedreferenceGibbs RS, Blanco JD, St Clair PJ, Castaneda YS. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J Infect Dis. 1982; 145 ( 1 ): 1 â 8.
dc.identifier.citedreferenceRomero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989; 161 ( 3 ): 817 â 824.
dc.identifier.citedreferenceRomero PJ, Rojas L. The effect of ATP on Ca(2+)â dependent K+ channels of human red cells. Acta Cient Venez. 1992; 43 ( 1 ): 19 â 25.
dc.identifier.citedreferenceCox C, Saxena N, Watt AP, et al. The common vaginal commensal bacterium Ureaplasma parvum is associated with chorioamnionitis in extreme preterm labor. J Matern Fetal Neonatal Med. 2016; 29 ( 22 ): 3646 â 3651.
dc.identifier.citedreferenceYoneda N, Yoneda S, Niimi H, et al. Polymicrobial amniotic fluid infection with mycoplasma/ureaplasma and other bacteria induces severe intraâ amniotic inflammation associated with poor perinatal prognosis in preterm labor. Am J Reprod Immunol. 2016; 75 ( 2 ): 112 â 125.
dc.identifier.citedreferenceOh KJ, Kim SM, Hong JS, et al. Twentyâ four percent of patients with clinical chorioamnionitis in preterm gestations have no evidence of either cultureâ proven intraamniotic infection or intraamniotic inflammation. Am J Obstet Gynecol. 2017; 216 ( 6 ): 604.e601 â 604.e611.
dc.identifier.citedreferenceOh KJ, Hong JS, Romero R, Yoon BH. The frequency and clinical significance of intraâ amniotic inflammation in twin pregnancies with preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2019; 32 ( 4 ): 527 â 541.
dc.identifier.citedreferenceLiggins CG. Cervical ripening as an inflammatory reaction. In: Elwood DA, Andersson A, eds. Cervix in Pregnancy and Labour. Edinburgh, UK: Churchill Livingstone; 1981: 1 â 9.
dc.identifier.citedreferenceShalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015; 22 ( 4 ): 526 â 539.
dc.identifier.citedreferenceBlencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012; 379 ( 9832 ): 2162 â 2172.
dc.identifier.citedreferenceLiu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000â 13, with projections to inform postâ 2015 priorities: an updated systematic analysis. Lancet. 2015; 385 ( 9966 ): 430 â 440.
dc.identifier.citedreferenceManuck TA, Rice MM, Bailit JL, et al. Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort. Am J Obstet Gynecol. 2016; 215 ( 1 ): 103.e101 â 103.e114.
dc.identifier.citedreferenceRomero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann NY Acad Sci. 1994; 734: 414 â 429.
dc.identifier.citedreferenceBerkowitz GS, Blackmoreâ Prince C, Lapinski RH, Savitz DA. Risk factors for preterm birth subtypes. Epidemiology. 1998; 9 ( 3 ): 279 â 285.
dc.identifier.citedreferenceMoutquin JM. Classification and heterogeneity of preterm birth. BJOG. 2003; 110 ( Suppl 20 ): 30 â 33.
dc.identifier.citedreferenceGoldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008; 371 ( 9606 ): 75 â 84.
dc.identifier.citedreferenceMuglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010; 362 ( 6 ): 529 â 535.
dc.identifier.citedreferenceRomero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014; 345 ( 6198 ): 760 â 765.
dc.identifier.citedreferenceRomero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol. 1988; 12 ( 4 ): 262 â 279.
dc.identifier.citedreferenceHirsch E, Saotome I, Hirsh D. A model of intrauterine infection and preterm delivery in mice. Am J Obstet Gynecol. 1995; 172 ( 5 ): 1598 â 1603.
dc.identifier.citedreferenceBaggia S, Gravett MG, Witkin SS, Haluska GJ, Novy MJ. Interleukinâ 1 beta intraâ amniotic infusion induces tumor necrosis factorâ alpha, prostaglandin production, and preterm contractions in pregnant rhesus monkeys. J Soc Gynecol Investig. 1996; 3 ( 3 ): 121 â 126.
dc.identifier.citedreferenceGomez R, Romero R, Edwin SS, David C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am. 1997; 11 ( 1 ): 135 â 176.
dc.identifier.citedreferenceHirsch E, Blanchard R, Mehta SP. Differential fetal and maternal contributions to the cytokine milieu in a murine model of infectionâ induced preterm birth. Am J Obstet Gynecol. 1999; 180 ( 2 Pt 1 ): 429 â 434.
dc.identifier.citedreferenceHirsch E, Muhle R. Intrauterine bacterial inoculation induces labor in the mouse by mechanisms other than progesterone withdrawal. Biol Reprod. 2002; 67 ( 4 ): 1337 â 1341.
dc.identifier.citedreferenceSadowsky DW, Novy MJ, Witkin SS, Gravett MG. Dexamethasone or interleukinâ 10 blocks interleukinâ 1betaâ induced uterine contractions in pregnant rhesus monkeys. Am J Obstet Gynecol. 2003; 188 ( 1 ): 252 â 263.
dc.identifier.citedreferencePark JS, Park CW, Lockwood CJ, Norwitz ER. Role of cytokines in preterm labor and birth. Minerva Ginecol. 2005; 57 ( 4 ): 349 â 366.
dc.identifier.citedreferenceHirsch E, Filipovich Y, Mahendroo M. Signaling via the type I ILâ 1 and TNF receptors is necessary for bacterially induced preterm labor in a murine model. Am J Obstet Gynecol. 2006; 194 ( 5 ): 1334 â 1340.
dc.identifier.citedreferenceRomero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007; 65 ( 12 Pt 2 ): S194 â S202.
dc.identifier.citedreferenceMendelson CR. Minireview: fetalâ maternal hormonal signaling in pregnancy and labor. Mol Endocrinol. 2009; 23 ( 7 ): 947 â 954.
dc.identifier.citedreferenceAdams Waldorf KM, Gravett MG, McAdams RM, et al. Choriodecidual group B streptococcal inoculation induces fetal lung injury without intraâ amniotic infection and preterm labor in Macaca nemestrina. PLoS ONE. 2011; 6 ( 12 ): e28972.
dc.identifier.citedreferenceSenthamaraikannan P, Presicce P, Rueda CM, et al. Intraâ amniotic Ureaplasma parvum â induced maternal and fetal inflammation and immune responses in rhesus macaques. J Infect Dis. 2016; 214 ( 10 ): 1597 â 1604.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intraâ amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014; 71 ( 4 ): 330 â 358.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014; 72 ( 5 ): 458 â 474.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Sterile intraâ amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2014; 28: 1343 â 1359.
dc.identifier.citedreferenceGosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983; 39 ( 4 ): 348 â 354.
dc.identifier.citedreferenceCombs CA, Gravett M, Garite TJ, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014; 210 ( 2 ): 125.e121 â 125.e115.
dc.identifier.citedreferenceRomero R, Miranda J, Chaemsaithong P, et al. Sterile and microbialâ associated intraâ amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015; 28 ( 12 ): 1394 â 1409.
dc.identifier.citedreferenceOppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005; 17 ( 4 ): 359 â 365.
dc.identifier.citedreferenceLotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damageâ associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007; 220: 60 â 81.
dc.identifier.citedreferenceRubartelli A, Lotze MT. Inside, outside, upside down: damageâ associated molecularâ pattern molecules (DAMPs) and redox. Trends Immunol. 2007; 28 ( 10 ): 429 â 436.
dc.identifier.citedreferenceRomero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukinâ 1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989; 160 ( 5 Pt 1 ): 1117 â 1123.
dc.identifier.citedreferenceRomero R, Mazor M, Brandt F, et al. Interleukinâ 1 alpha and interleukinâ 1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992; 27 ( 3â 4 ): 117 â 123.
dc.identifier.citedreferenceFriel LA, Romero R, Edwin S, et al. The calcium binding protein, S100B, is increased in the amniotic fluid of women with intraâ amniotic infection/inflammation and preterm labor with intact or ruptured membranes. J Perinat Med. 2007; 35 ( 5 ): 385 â 393.
dc.identifier.citedreferenceChaiworapongsa T, Erez O, Kusanovic JP, et al. Amniotic fluid heat shock protein 70 concentration in histologic chorioamnionitis, term and preterm parturition. J Matern Fetal Neonatal Med. 2008; 21 ( 7 ): 449 â 461.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Alpay Savasan Z, et al. Damageâ associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011; 24 ( 12 ): 1444 â 1455.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Savasan ZA, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012; 25 ( 6 ): 558 â 567.
dc.identifier.citedreferenceRomero R, Mazor M, Tartakovsky B. Systemic administration of interleukinâ 1 induces preterm parturition in mice. Am J Obstet Gynecol. 1991; 165 ( 4 Pt 1 ): 969 â 971.
dc.identifier.citedreferenceRomero R, Tartakovsky B. The natural interleukinâ 1 receptor antagonist prevents interleukinâ 1â induced preterm delivery in mice. Am J Obstet Gynecol. 1992; 167 ( 4 Pt 1 ): 1041 â 1045.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Plazyo O, et al. Intraâ amniotic administration of HMGB1 induces spontaneous preterm labor and birth. Am J Reprod Immunol. 2016; 75 ( 1 ): 3 â 7.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Garciaâ Flores V, et al. Inhibition of the NLRP3 inflammasome can prevent sterile intraâ amniotic inflammation, preterm labor/birth and adverse neonatal outcomes. Biol Reprod. 2018; 100: 1306 â 1318.
dc.identifier.citedreferenceGotsch F, Romero R, Chaiworapongsa T, et al. Evidence of the involvement of caspaseâ 1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med. 2008; 21 ( 9 ): 605 â 616.
dc.identifier.citedreferenceJaiswal MK, Agrawal V, Mallers T, Gilmanâ Sachs A, Hirsch E, Beaman KD. Regulation of apoptosis and innate immune stimuli in inflammationâ induced preterm labor. J Immunol. 2013; 191 ( 11 ): 5702 â 5713.
dc.identifier.citedreferencePlazyo O, Romero R, Unkel R, et al. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol Reprod. 2016; 95 ( 6 ): 130.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod Sci. 2017; 24 ( 10 ): 1382 â 1401.
dc.identifier.citedreferenceCross SN, Potter JA, Aldo P, et al. Viral infection sensitizes human fetal membranes to bacterial lipopolysaccharide by MERTK inhibition and inflammasome activation. J Immunol. 2017; 199 ( 8 ): 2885 â 2895.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Panaitescu B, et al. Inflammasome activation during spontaneous preterm labor with intraâ amniotic infection or sterile intraâ amniotic inflammation. Am J Reprod Immunol. 2018; 80 ( 5 ): e13049.
dc.identifier.citedreferenceFaro J, Romero R, Schwenkel G, et al. Intraâ amniotic inflammation induces preterm birth by activating the NLRP3 inflammasome. Biol Reprod. 2018; 100: 1290 â 1305.
dc.identifier.citedreferenceLim R, Lappas M. NODâ like receptor pyrin domainâ containingâ 3 (NLRP3) regulates inflammationâ induced proâ labor mediators in human myometrial cells. Am J Reprod Immunol. 2018; 79 ( 4 ): e12825.
dc.identifier.citedreferenceStrauss JF 3rd, Romero R, Gomezâ Lopez N, et al. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am J Obstet Gynecol. 2018; 218 ( 3 ): 294 â 314.e292.
dc.identifier.citedreferenceWillcockson AR, Nandu T, Liu CL, Nallasamy S, Kraus WL, Mahendroo M. Transcriptome signature identifies distinct cervical pathways induced in lipopolysaccharideâ mediated preterm birth. Biol Reprod. 2018; 98 ( 3 ): 408 â 421.
dc.identifier.citedreferenceMartinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proILâ beta. Mol Cell. 2002; 10 ( 2 ): 417 â 426.
dc.identifier.citedreferencePetrilli V, Papin S, Tschopp J. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Curr Biol. 2005; 15 ( 15 ): R581.
dc.identifier.citedreferenceOgura Y, Sutterwala FS, Flavell RA. The inflammasome: first line of the immune response to cell stress. Cell. 2006; 126 ( 4 ): 659 â 662.
dc.identifier.citedreferenceMariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007; 7 ( 1 ): 31 â 40.
dc.identifier.citedreferenceStutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009; 119 ( 12 ): 3502 â 3511.
dc.identifier.citedreferenceFranchi L, Eigenbrod T, Munozâ Planillo R, Nunez G. The inflammasome: a caspaseâ 1â activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009; 10 ( 3 ): 241 â 247.
dc.identifier.citedreferenceJha S, Ting JP. Inflammasomeâ associated nucleotideâ binding domain, leucineâ rich repeat proteins and inflammatory diseases. J Immunol. 2009; 183 ( 12 ): 7623 â 7629.
dc.identifier.citedreferenceSchroder K, Tschopp J. The inflammasomes. Cell. 2010; 140 ( 6 ): 821 â 832.
dc.identifier.citedreferenceFranchi L, Munozâ Planillo R, Reimer T, Eigenbrod T, Nunez G. Inflammasomes as microbial sensors. Eur J Immunol. 2010; 40 ( 3 ): 611 â 615.
dc.identifier.citedreferenceGross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev. 2011; 243 ( 1 ): 136 â 151.
dc.identifier.citedreferenceLamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011; 187 ( 2 ): 597 â 602.
dc.identifier.citedreferenceHorvath GL, Schrum JE, De Nardo CM, Latz E. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev. 2011; 243 ( 1 ): 119 â 135.
dc.identifier.citedreferencevan de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. Inflammasome activation and ILâ 1beta and ILâ 18 processing during infection. Trends Immunol. 2011; 32 ( 3 ): 110 â 116.
dc.identifier.citedreferenceFranchi L, Munozâ Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012; 13 ( 4 ): 325 â 332.
dc.identifier.citedreferenceFranchi L, Nunez G. Immunology. Orchestrating inflammasomes. Science. 2012; 337 ( 6100 ): 1299 â 1300.
dc.identifier.citedreferenceHenaoâ Mejia J, Elinav E, Strowig T, Flavell RA. Inflammasomes: far beyond inflammation. Nat Immunol. 2012; 13 ( 4 ): 321 â 324.
dc.identifier.citedreferenceLatz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013; 13 ( 6 ): 397 â 411.
dc.identifier.citedreferenceLamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014; 157 ( 5 ): 1013 â 1022.
dc.identifier.citedreferenceGuo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015; 21 ( 7 ): 677 â 687.
dc.identifier.citedreferenceBlack RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A preâ aspartateâ specific protease from human leukocytes that cleaves proâ interleukinâ 1 beta. J Biol Chem. 1989; 264 ( 10 ): 5323 â 5326.
dc.identifier.citedreferenceKostura MJ, Tocci MJ, Limjuco G, et al. Identification of a monocyte specific preâ interleukin 1 beta convertase activity. Proc Natl Acad Sci USA. 1989; 86 ( 14 ): 5227 â 5231.
dc.identifier.citedreferenceThornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukinâ 1 beta processing in monocytes. Nature. 1992; 356 ( 6372 ): 768 â 774.
dc.identifier.citedreferenceCerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukinâ 1 beta converting enzyme. Science. 1992; 256 ( 5053 ): 97 â 100.
dc.identifier.citedreferenceGu Y, Kuida K, Tsutsui H, et al. Activation of interferonâ gamma inducing factor mediated by interleukinâ 1beta converting enzyme. Science. 1997; 275 ( 5297 ): 206 â 209.
dc.identifier.citedreferenceGhayur T, Banerjee S, Hugunin M, et al. Caspaseâ 1 processes IFNâ gammaâ inducing factor and regulates LPSâ induced IFNâ gamma production. Nature. 1997; 386 ( 6625 ): 619 â 623.
dc.identifier.citedreferenceDinarello CA. Interleukinâ 1 beta, interleukinâ 18, and the interleukinâ 1 beta converting enzyme. Ann NY Acad Sci. 1998; 856: 1 â 11.
dc.identifier.citedreferenceFantuzzi G, Dinarello CA. Interleukinâ 18 and interleukinâ 1 beta: two cytokine substrates for ICE (caspaseâ 1). J Clin Immunol. 1999; 19 ( 1 ): 1 â 11.
dc.identifier.citedreferenceSwanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019; 19 ( 8 ): 477 â 489. https://doi.org/10.1038/s41577-019-0165-0
dc.identifier.citedreferenceCookson BT, Brennan MA. Proâ inflammatory programmed cell death. Trends Microbiol. 2001; 9 ( 3 ): 113 â 114.
dc.identifier.citedreferenceBergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009; 7 ( 2 ): 99 â 109.
dc.identifier.citedreferenceMiao EA, Rajan JV, Aderem A. Caspaseâ 1â induced pyroptotic cell death. Immunol Rev. 2011; 243 ( 1 ): 206 â 214.
dc.identifier.citedreferenceRomero R, Emamian M, Quintero R, et al. The value and limitations of the Gram stain examination in the diagnosis of intraamniotic infection. Am J Obstet Gynecol. 1988; 159 ( 1 ): 114 â 119.
dc.identifier.citedreferenceRomero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection.. J Clin Invest. 1990; 85 ( 5 ): 1392 â 1400.
dc.identifier.citedreferenceRedline RW, Fayeâ Petersen O, Heller D,, Qureshi F, Savell V, Vogler C. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003; 6 ( 5 ): 435 â 448.
dc.identifier.citedreferenceKayagaki N, Stowe IB, Lee BL, et al. Caspaseâ 11 cleaves gasdermin D for nonâ canonical inflammasome signalling. Nature. 2015; 526 ( 7575 ): 666 â 671.
dc.identifier.citedreferenceXu Y, Plazyo O, Romero R, Hassan SS, Gomezâ Lopez N. Isolation of leukocytes from the human maternalâ fetal interface. J Vis Exp. 2015; 99: e52863.
dc.identifier.citedreferenceKhanova E, Wu R, Wang W, et al. Pyroptosis by caspase11/4â gasderminâ D pathway in alcoholic hepatitis in mice and patients. Hepatology. 2018; 67 ( 5 ): 1737 â 1753.
dc.identifier.citedreferenceMitra S, Exline M, Habyarimana F, et al. Microparticulate caspase 1 regulates gasdermin D and pulmonary vascular endothelial cell injury. Am J Respir Cell Mol Biol. 2018; 59 ( 1 ): 56 â 64.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am J Reprod Immunol. 2018; 79 ( 4 ): e12827.
dc.identifier.citedreferenceGomezâ Lopez N, Roberto R, Galaz J, et al. Cellular immune responses in amniotic fluid of women with preterm labor and intraâ amniotic infection or intraâ amniotic inflammation. Am J Reprod Immunol. 2019; 82: e13171. https://doi.org/10.1111/aji.13171
dc.identifier.citedreferenceRomero R, Yoon BH, Mazor M, et al. A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukinâ 6, and gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 1993; 169 ( 4 ): 839 â 851.
dc.identifier.citedreferenceGomez R, Romero R, Galasso M, Behnke E, Insunza A, Cotton DB. The value of amniotic fluid interleukinâ 6, white blood cell count, and gram stain in the diagnosis of microbial invasion of the amniotic cavity in patients at term. Am J Reprod Immunol. 1994; 32 ( 3 ): 200 â 210.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Garciaâ Flores V, et al. Amniotic fluid neutrophils can phagocytize bacteria: a mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol. 2017; 78 ( 4 ): e12723.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Neutrophil extracellular traps in the amniotic cavity of women with intraâ amniotic infection: a new mechanism of host defense. Reprod Sci. 2017; 24 ( 8 ): 1139 â 1153.
dc.identifier.citedreferenceCerqueira DM, Gomes M, Silva A, et al. Guanylateâ binding protein 5 licenses caspaseâ 11 for Gasderminâ D mediated host resistance to Brucella abortus infection. PLoS Pathog. 2018; 14 ( 12 ): e1007519.
dc.identifier.citedreferenceHeilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. The Gasderminâ D pore acts as a conduit for ILâ 1beta secretion in mice. Eur J Immunol. 2018; 48 ( 4 ): 584 â 592.
dc.identifier.citedreferenceMonteleone M, Stanley AC, Chen KW, et al. Interleukinâ 1beta maturation triggers its relocation to the plasma membrane for gasderminâ Dâ dependent and â independent secretion. Cell Rep. 2018; 24 ( 6 ): 1425 â 1433.
dc.identifier.citedreferenceChen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin Dâ dependent neutrophil extracellular traps. Sci Immunol. 2018; 3 ( 26 ): eaar6676.
dc.identifier.citedreferenceSollberger G, Choidas A, Burn GL, et al. plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018; 3 ( 26 ): eaar6689.
dc.identifier.citedreferenceTall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J Lipid Res. 2019; 60: 721 â 727.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Leng Y, et al. Neutrophil extracellular traps in acute chorioamnionitis: a mechanism of host defense. Am J Reprod Immunol. 2017; 77 ( 3 ): e12617.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.