Show simple item record

Top‐Down Constraints on Methane Point Source Emissions From Animal Agriculture and Waste Based on New Airborne Measurements in the U.S. Upper Midwest

dc.contributor.authorYu, Xueying
dc.contributor.authorMillet, Dylan B.
dc.contributor.authorWells, Kelley C.
dc.contributor.authorGriffis, Timothy J.
dc.contributor.authorChen, Xin
dc.contributor.authorBaker, John M.
dc.contributor.authorConley, Stephen A.
dc.contributor.authorSmith, Mackenzie L.
dc.contributor.authorGvakharia, Alexander
dc.contributor.authorKort, Eric A.
dc.contributor.authorPlant, Genevieve
dc.contributor.authorWood, Jeffrey D.
dc.date.accessioned2020-01-13T15:08:34Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-01-13T15:08:34Z
dc.date.issued2020-01
dc.identifier.citationYu, Xueying; Millet, Dylan B.; Wells, Kelley C.; Griffis, Timothy J.; Chen, Xin; Baker, John M.; Conley, Stephen A.; Smith, Mackenzie L.; Gvakharia, Alexander; Kort, Eric A.; Plant, Genevieve; Wood, Jeffrey D. (2020). "Top‐Down Constraints on Methane Point Source Emissions From Animal Agriculture and Waste Based on New Airborne Measurements in the U.S. Upper Midwest." Journal of Geophysical Research: Biogeosciences 125(1): n/a-n/a.
dc.identifier.issn2169-8953
dc.identifier.issn2169-8961
dc.identifier.urihttps://hdl.handle.net/2027.42/152727
dc.description.abstractAgriculture and waste are thought to account for half or more of the U.S. anthropogenic methane source. However, current bottom‐up inventories contain inherent uncertainties from extrapolating limited in situ measurements to larger scales. Here, we employ new airborne methane measurements over the U.S. Corn Belt and Upper Midwest, among the most intensive agricultural regions in the world, to quantify emissions from an array of key agriculture and waste point sources. Nine of the largest concentrated animal feeding operations in the region and two sugar processing plants were measured, with multiple revisits during summer (August 2017), winter (January 2018), and spring (May–June 2018). We compare the top‐down fluxes with state‐of‐science bottom‐up estimates informed by U.S. Environmental Protection Agency methodology and site‐level animal population and management practices. Top‐down point source emissions are consistent with bottom‐up estimates for beef concentrated animal feeding operations but moderately lower for dairies (by 37% on average) and significantly lower for sugar plants (by 80% on average). Swine facility results are more variable. The assumed bottom‐up seasonality for manure methane emissions is not apparent in the aircraft measurements, which may be due to on‐site management factors that are difficult to capture accurately in national‐scale inventories. If not properly accounted for, such seasonal disparities could lead to source misattribution in top‐down assessments of methane fluxes.Plain Language SummaryKey agricultural methane sources are quantified using new airborne measurements in the U.S. Corn Belt and Upper Midwest. Measurements spanned multiple seasons and targeted nine of the largest concentrated animal feeding operations in the region along with two sugar processing plants. Compared with bottom‐up estimates informed by U.S. Environmental Protection Agency methodology and site‐level animal and management data, top‐down fluxes agree well with bottom‐up estimates for beef but are lower for dairies and sugar plants and suggest a possible mismatch in the timing of emissions.Key PointsWe used aircraft measurements to quantify methane emissions from key agricultural point sources in the Upper Midwest during three seasonsTop‐down methane fluxes are consistent with bottom‐up values for beef facilities but reveal a mismatch for dairies and sugar plantsThese discrepancies point to potential spatial and temporal misattribution of emissions used for atmospheric inverse modeling
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Intergovernmental Panel on Climate Change
dc.titleTop‐Down Constraints on Methane Point Source Emissions From Animal Agriculture and Waste Based on New Airborne Measurements in the U.S. Upper Midwest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152727/1/jgrg21552.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152727/2/jgrg21552_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152727/3/jgrg21552-sup-0001-2019JG005429-SI.pdf
dc.identifier.doi10.1029/2019JG005429
dc.identifier.sourceJournal of Geophysical Research: Biogeosciences
dc.identifier.citedreferenceRyoo, J. M., Iraci, L. T., Tanaka, T., Marrero, J. E., Yates, E. L., Fung, I., Michalak, A. M., Tadić, J., Gore, W., Bui, T. P., Dean‐Day, J. M., & Chang, C. S. ( 2019 ). Quantification of CO 2 and CH 4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements. Atmospheric Measurement Techniques, 12 ( 5 ), 2949 – 2966. https://doi.org/10.5194/amt‐12‐2949‐2019
dc.identifier.citedreferenceIADNR, Iowa Department of Natural Resources, Retrieved on June 14, 2018, from https://programs.iowadnr.gov/animalfeedingoperations/Default.aspx
dc.identifier.citedreferenceIPCC ( 2006 ). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.). The National Greenhouse Gas Inventories Programme. Hayama, Kanagawa, Japan: The Intergovernmental Panel on Climate Change.
dc.identifier.citedreferenceJohnson, M. R., Tyner, D. R., Conley, S., Schwietzke, S., & Zavala‐Araiza, D. ( 2017 ). Comparisons of airborne measurements and inventory estimates of methane emissions in the Alberta upstream oil and gas sector. Environmental Science & Technology, 51 ( 21 ), 13,008 – 13,017.
dc.identifier.citedreferenceKarion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza, M., Conley, S. A., Davis, K., Deng, A., Hardesty, M., Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella, C., Smith, M., Wolter, S., Yacovitch, T. I., & Tans, P. ( 2015 ). Aircraft‐based estimate of total methane emissions from the Barnett shale region. Environmental Science & Technology, 49 ( 13 ), 8124 – 8131. https://doi.org/10.1021/acs.est.5b00217
dc.identifier.citedreferenceKariyapperuma, K. A., Johannesson, G., Maldaner, L., VanderZaag, A., Gordon, R., & Wagner‐Riddle, C. ( 2018 ). Year‐round methane emissions from liquid dairy manure in a cold climate reveal hysteretic pattern. Agricultural and Forest Meteorology, 258, 56 – 65. https://doi.org/10.1016/j.agrformet.2017.12.185
dc.identifier.citedreferenceKrings, T., Neininger, B., Gerilowski, K., Krautwurst, S., Buchwitz, M., Burrows, J. P., Lindemann, C., Ruhtz, T., Schüttemeyer, D., & Bovensmann, H. ( 2018 ). Airborne remote sensing and in situ measurements of atmospheric CO 2 to quantify point source emissions. Atmospheric Measurement Techniques, 11 ( 2 ), 721 – 739. https://doi.org/10.5194/amt‐11‐721‐2018
dc.identifier.citedreferenceLavoie, T. N., Shepson, P. B., Cambaliza, M. O. L., Stirm, B. H., Conley, S., Mehrotra, S., Faloona, I. C., & Lyon, D. ( 2017 ). Spatiotemporal variability of methane emissions at oil and natural gas operations in the eagle Ford Basin. Environmental Science & Technology, 51 ( 14 ), 8001 – 8009. https://doi.org/10.1021/acs.est.7b00814
dc.identifier.citedreferenceMaasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong, S., & Fischer, M. L. ( 2016 ). Gridded national inventory of U.S. methane emissions. Environmental Science & Technology, 50 ( 23 ), 13,123 – 13,133. https://doi.org/10.1021/acs.est.6b02878
dc.identifier.citedreferenceMaldaner, L., Wagner‐Riddle, C., VanderZaag, A. C., Gordon, R., & Duke, C. ( 2018 ). Methane emissions from storage of digestate at a dairy manure biogas facility. Agricultural and Forest Meteorology, 258, 96 – 107. https://doi.org/10.1016/j.agrformet.2017.12.184
dc.identifier.citedreferenceMehrotra, S., Faloona, I., Suard, M., Conley, S., & Fischer, M. L. ( 2017 ). Airborne methane emission measurements for selected oil and gas facilities across California. Environmental Science & Technology, 51 ( 21 ), 12,981 – 12,987.
dc.identifier.citedreferenceMiller, S. M., Michalak, A. M., & Wofsy, S. C. ( 2014 ). Reply to Hristov et al.: Linking methane emissions inventories with atmospheric observations. Proceedings of the National Academy of Sciences, 111 ( 14 ), E1321 – E1321. https://doi.org/10.1073/pnas.1401703111
dc.identifier.citedreferenceMiller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fischer, M. L., Janssens‐Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., & Sweeney, C. ( 2013 ). Anthropogenic emissions of methane in the United States. Proceedings of the National Academy of Sciences, 110 ( 50 ), 20,018 – 20,022. https://doi.org/10.1073/pnas.1314392110
dc.identifier.citedreferencePark, K.‐H., Thompson, A. G., Marinier, M., Clark, K., & Wagner‐Riddle, C. ( 2006 ). Greenhouse gas emissions from stored liquid swine manure in a cold climate. Atmospheric Environment, 40 ( 4 ), 618 – 627.
dc.identifier.citedreferenceScheutz, C., Kjeldsen, P., Bogner, J. E., de Visscher, A., Gebert, J., Hilger, H. A., Huber‐Humer, M., & Spokas, K. ( 2009 ). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27 ( 5 ), 409 – 455. https://doi.org/10.1177/0734242X09339325
dc.identifier.citedreferenceSMBSC, Southern Minnesota Beet Sugar Cooperative ( 2019 ), Retrieved July 21, 2019, from http://www.smbsc.com/OurSugar/SugarProcess/WaterTreatment.aspx.
dc.identifier.citedreferenceSmith, M. L., Gvakharia, A., Kort, E. A., Sweeney, C., Conley, S. A., Faloona, I., Newberger, T., Schnell, R., Schwietzke, S., & Wolter, S. ( 2017 ). Airborne quantification of methane emissions over the four corners region. Environmental Science & Technology, 51 ( 10 ), 5832 – 5837. https://doi.org/10.1021/acs.est.6b06107
dc.identifier.citedreferenceTurner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., Boesch, H., Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, T., Wennberg, P. O., & Wunch, D. ( 2015 ). Estimating global and north American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 15 ( 12 ), 7049 – 7069. https://doi.org/10.5194/acp‐15‐7049‐2015
dc.identifier.citedreferenceUlyatt, M. J., Lassey, K. R., Shelton, I. D., & Walker, C. F. ( 2002 ). Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand. New Zealand Journal of Agricultural Research, 45 ( 4 ), 217 – 226. https://doi.org/10.1080/00288233.2002.9513512
dc.identifier.citedreferenceUSDA‐NASS, United States Department of Agriculture, National Agricultural Statistics Service ( 2018 ). Retrieved on June 3, 2018, from https://quickstats.nass.usda.gov
dc.identifier.citedreferenceUSEPA, U.S. Environmental Protection Agency ( 2018 ). Retrieved on April 18, 2018, from https://www.epa.gov/ghgemissions/inventory‐us‐greenhouse‐gas‐emissions‐and‐sinks‐1990‐2014
dc.identifier.citedreferenceUSGS, US Geological Survey ( 2019 ). retrieved February 20, 2019, from https://nationalmap.gov/elevation.html
dc.identifier.citedreferenceVanderZaag, A., MacDonald, J., Evans, L., Vergé, X., & Desjardins, R. ( 2013 ). Towards an inventory of methane emissions from manure management that is responsive to changes on Canadian farms. Environmental Research Letters, 8 ( 3 ), 035008. https://doi.org/10.1088/1748‐9326/8/3/035008
dc.identifier.citedreferenceVanderZaag, A. C., Flesch, T. K., Desjardins, R. L., Baldé, H., & Wright, T. ( 2014 ). Measuring methane emissions from two dairy farms: Seasonal and manure‐management effects. Agricultural and Forest Meteorology, 194, 259 – 267. https://doi.org/10.1016/j.agrformet.2014.02.003
dc.identifier.citedreferenceVaron, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y., & Huang, Y. ( 2018 ). Quantifying methane point sources from fine‐scale satellite observations of atmospheric methane plumes. Atmospheric Measurement Techniques, 11 ( 10 ), 5673 – 5686. https://doi.org/10.5194/amt‐11‐5673‐2018
dc.identifier.citedreferenceVaron, D. J., McKeever, J., Jervis, D., Maasakkers, J. D., Pandey, S., Houweling, S., Aben, I., Scarpelli, T., & Jacob, D. J. ( 2019 ). Satellite discovery of anomalously large methane point sources from oil/gas production. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083798
dc.identifier.citedreferenceVaughn, T. L., Bell, C. S., Yacovitch, T. I., Roscioli, J. R., Herndon, S. C., Conley, S., Schwietzke, S., Heath, G. A., Pétron, G., & Zimmerle, D. ( 2017 ). Comparing facility‐level methane emission rate estimates at natural gas gathering and boosting stations. Elementa: Science of the Anthropocene, 5 ( 0 ), 71. https://doi.org/10.1525/elementa.257
dc.identifier.citedreferenceACSC, American Crystal Sugar Company ( 2019 ), Retrieved on July 21, 2019, from https://www.crystalsugar.com/sugar‐processing/environmental‐commitment/frequently‐asked‐questions/.
dc.identifier.citedreferenceBeauchemin, K., Kreuzer, M., O’mara, F., & McAllister, T. ( 2008 ). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48 ( 2 ), 21 – 27.
dc.identifier.citedreferenceBloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., & Jacob, D. J. ( 2017 ). A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geoscientific Model Development, 10 ( 6 ), 2141 – 2156. https://doi.org/10.5194/gmd‐10‐2141‐2017
dc.identifier.citedreferenceBoadi, D., Benchaar, C., Chiquette, J., & Massé, D. ( 2004 ). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84 ( 3 ), 319 – 335. https://doi.org/10.4141/A03‐109
dc.identifier.citedreferenceChen, Z., Griffis, T. J., Baker, J. M., Millet, D. B., Wood, J. D., Dlugokencky, E. J., Andrews, A. E., Sweeney, C., Hu, C., & Kolka, R. K. ( 2018 ). Source partitioning of methane emissions and its seasonality in the U.S. Midwest. Journal of Geophysical Research: Biogeosciences, 123, 646 – 659. https://doi.org/10.1002/2017JG004356
dc.identifier.citedreferenceConley, S., Faloona, I., Mehrotra, S., Suard, M., Lenschow, D. H., Sweeney, C., Herndon, S., Schwietzke, S., Pétron, G., Pifer, J., Kort, E. A., & Schnell, R. ( 2017 ). Application of Gauss’s theorem to quantify localized surface emissions from airborne measurements of wind and trace gases. Atmospheric Measurement Techniques, 10 ( 9 ), 3345 – 3358. https://doi.org/10.5194/amt‐10‐3345‐2017
dc.identifier.citedreferenceCui, Y. Y., Brioude, J., Angevine, W. M., Peischl, J., McKeen, S. A., Kim, S. W., Neuman, J. A., Henze, D. K., Bousserez, N., Fischer, M. L., Jeong, S., Michelsen, H. A., Bambha, R. P., Liu, Z., Santoni, G. W., Daube, B. C., Kort, E. A., Frost, G. J., Ryerson, T. B., Wofsy, S. C., & Trainer, M. ( 2017 ). Top‐down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley. Journal of Geophysical Research: Atmospheres, 122, 3686 – 3699. https://doi.org/10.1002/2016JD026398
dc.identifier.citedreferenceDilek, F. B., Yetis, U., & Gökçay, C. F. ( 2003 ). Water savings and sludge minimization in a beet‐sugar factory through re‐design of the wastewater treatment facility. Journal of Cleaner Production, 11 ( 3 ), 327 – 331. https://doi.org/10.1016/S0959‐6526(02)00029‐X
dc.identifier.citedreferenceeCFR ( 2019 ), Electronic Code of Federal Regulations Subpart TT‐Industrial Waste Landfills. Retrieved on January 31, 2019, from https://www.ecfr.gov/cgi‐bin/retrieveECFR?gp=&SID=e432fd268d29a719e9b083b1434fc3cf&mc=true&n=sp40.23.98.tt&r=SUBPART&ty=HTML.
dc.identifier.citedreferenceEDGAR, Emission Database for Global Atmospheric Research, v4.2 FT2010, 2013. https://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010.
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., & Zhao, B. ( 2017 ). The modern‐era retrospective analysis for research and applications, version 2 (MERRA‐2). Journal of Climate, 30 ( 14 ), 5419 – 5454. https://doi.org/10.1175/JCLI‐D‐16‐0758.1
dc.identifier.citedreferenceGHGRP, Greenhouse Gas Reporting Program ( 2019 ). Retrieved on November 23, 2019, from https://ghgdata.epa.gov/ghgp/main.do.
dc.identifier.citedreferenceGvakharia, A., Kort, E. A., Brandt, A., Peischl, J., Ryerson, T. B., Schwarz, J. P., Smith, M. L., & Sweeney, C. ( 2017 ). Methane, black carbon, and ethane emissions from natural gas flares in the Bakken shale, North Dakota. Environmental Science & Technology, 51 ( 9 ), 5317 – 5325. https://doi.org/10.1021/acs.est.6b05183
dc.identifier.citedreferenceGvakharia, A., Kort, E. A., Smith, M. L., & Conley, S. ( 2018 ). Testing and evaluation of a new airborne system for continuous N 2 O, CO 2, CO, and H 2 O measurements: The frequent calibration high‐performance airborne observation system (FCHAOS). Atmospheric Measurement Techniques, 11 ( 11 ), 6059 – 6074. https://doi.org/10.5194/amt‐11‐6059‐2018
dc.identifier.citedreferenceHarun, S. M. R., & Ogneva‐Himmelberger, Y. ( 2013 ). Distribution of industrial farms in the United States and socioeconomic, health, and environmental characteristics of counties. Geography Journal, 2013, 1 – 12. https://doi.org/10.1155/2013/385893
dc.identifier.citedreferenceHedelius, J. K., Liu, J., Oda, T., Maksyutov, S., Roehl, C. M., Iraci, L. T., Podolske, J. R., Hillyard, P. W., Liang, J., Gurney, K. R., Wunch, D., & Wennberg, P. O. ( 2018 ). Southern California megacity CO 2, CH 4, and CO flux estimates using ground‐ and space‐based remote sensing and a Lagrangian model. Atmospheric Chemistry and Physics, 18 ( 22 ), 16,271 – 16,291. https://doi.org/10.5194/acp‐18‐16271‐2018
dc.identifier.citedreferenceHristov, A. N., Harper, M., Meinen, R., Day, R., Lopes, J., Ott, T., Venkatesh, A., & Randles, C. A. ( 2017 ). Discrepancies and uncertainties in bottom‐up gridded inventories of livestock methane emissions for the contiguous United States. Environmental Science & Technology, 51 ( 23 ), 13,668 – 13,677. https://doi.org/10.1021/acs.est.7b03332
dc.identifier.citedreferenceHristov, A. N., Johnson, K. A., & Kebreab, E. ( 2014 ). Livestock methane emissions in the United States. Proceedings of the National Academy of Sciences, 111 ( 14 ), E1320 – E1320. https://doi.org/10.1073/pnas.1401046111
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.